Syllabus for ATMS 411 – Synoptic Meteorology II – Spring 2015

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading/Homework*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 13 Jan</td>
<td>Introduction/ Review</td>
<td>Lecture notes</td>
</tr>
<tr>
<td>R 15 Jan</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>T 20 Jan</td>
<td>3D Structure of Cyclones</td>
<td>Ch. 12.1-12.4</td>
</tr>
<tr>
<td>R 22 Jan</td>
<td>"</td>
<td>SW#1 due</td>
</tr>
<tr>
<td>T 27 Jan</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>R 29 Jan</td>
<td>"</td>
<td>SW#2 due</td>
</tr>
<tr>
<td>T 3 Feb</td>
<td>"</td>
<td>Quiz#1</td>
</tr>
<tr>
<td>R 5 Feb</td>
<td>Jet streams and streaks</td>
<td>SW#3 due</td>
</tr>
<tr>
<td>T 10 Feb</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>R 12 Feb</td>
<td>"</td>
<td>Ch. 14.1, 15.1-15.7, SW#4 due</td>
</tr>
<tr>
<td>T 17 Feb</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>R 19 Feb</td>
<td>"</td>
<td>SW#5 due</td>
</tr>
<tr>
<td>T 24 Feb</td>
<td>"</td>
<td>Quiz#2</td>
</tr>
<tr>
<td>R 26 Feb</td>
<td>Lecture/review</td>
<td></td>
</tr>
<tr>
<td>T 3 Mar</td>
<td>Exam I</td>
<td>13 Jan – 26 Feb material</td>
</tr>
<tr>
<td>R 5 Mar</td>
<td>Fronts and frontogenesis</td>
<td>Ch. 13, 14.3-14.7, SW#6 due</td>
</tr>
<tr>
<td>T 17 Mar</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>R 19 Mar</td>
<td>"</td>
<td>SW#7 due</td>
</tr>
<tr>
<td>T 24 Mar</td>
<td>"</td>
<td>Quiz#3</td>
</tr>
<tr>
<td>R 26 Mar</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>T 31 Mar</td>
<td>"</td>
<td>Quiz#3</td>
</tr>
<tr>
<td>R 2 Apr</td>
<td>Planetary boundary layer</td>
<td>Lecture notes, SW#8 due</td>
</tr>
<tr>
<td>T 7 Apr</td>
<td>"</td>
<td>Quiz#4</td>
</tr>
<tr>
<td>R 9 Apr</td>
<td>Lecture/review</td>
<td></td>
</tr>
<tr>
<td>T 14 Apr</td>
<td>Exam II</td>
<td>5 Mar – 9 Apr material</td>
</tr>
<tr>
<td>R 16 Apr</td>
<td>Planetary boundary layer</td>
<td>SW#9 due</td>
</tr>
<tr>
<td>T 21 Apr</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>R 23 Apr</td>
<td>"</td>
<td>SW#10 due</td>
</tr>
<tr>
<td>Final Exam Period</td>
<td>Exam III</td>
<td>13 Jan – 23 Apr material</td>
</tr>
</tbody>
</table>

*assignment completed before class meets on this date

Description

A continuing course which examines the causes and effects of mid-latitude synoptic-scale (~2000 km horizontal wavelength) cyclones, the predominant feature on TV weather maps, with a two-fold purpose; (1) to unify the many concepts you have learned while in the atmospheric sciences program and (2) to provide the necessary skills for being a knowledgeable weather forecaster. Although today’s computer weather models are beyond the human forecast capabilities, the human is still a necessary component in the weather forecast loop who can know when the computer models are likely to be in error and use their experience and pattern recognition capabilities to improve the overall operational weather forecast product.

Student Learning Outcomes

- generate an accurate conceptual model of atmospheric structure and evolution valid on the synoptic-scale
- improve problem-solving skills by applying knowledge to actual weather case studies
- develop an ability to make a significant contribution to a team-based research effort
Outline

Review
 Mid-latitude cyclone development {Carlson, Ch. 4, 10}
 Three-dimensional structure of mid-latitude cyclones {Carlson, Ch. 12.1-12.4}
 Jet streams and streaks {Carlson, Ch. 14.1, 15.1-15.7}
 Fronts and frontogenesis {Carlson, Ch. 13, 14.3-14.7}
 Planetary boundary layer and its impacts on the synoptic scale {lecture notes}
 Lee cyclogenesis {time permitting}

Grading

 Synopsis/WEO! 10%
 Quizzes 5%
 Exam I 25%
 Exam II 25%
 Final Exam 30%
 Map Discussion 5%
 Total 100%

 92% < total score ≤ 100% A
 90% < total score ≤ 92% A-
 88% < total score ≤ 90% B+
 82% < total score ≤ 88% B
 80% < total score ≤ 82% B-
 78% < total score ≤ 80% C+
 72% < total score ≤ 78% C
 70% < total score ≤ 72% C-
 68% < total score ≤ 70% D+
 60% < total score ≤ 68% D
 total score ≤ 60% F

Synopsis/WEO!

 The “Synopsis/WEO!” assignments consist of a Petterssen-Sutcliffe-based synopsis of a
given mid-latitude cyclone outside of the North American continent (first part) and the second
part (“WEO!”) involves a “work ‘em out” task whose answers each student will hand in
individually. Each group member is strongly encouraged to work individually on the weather
synopsis before assembling the final group synopsis. Students in the past have failed exams
because they let others do the work on group projects.

Map Discussion

 The map discussion given as part of your senior comprehensive exams will also count as
part of your grade for Synoptic II. You will have one opportunity to practice in front of your
peers before giving the “final” map discussion in front of the ATMS faculty. You can choose to
practice as many times as you would like in front of classmates, mirrors, and/or favorite stuffed
animals.

Quizzes

 Quizzes will be given bi-weekly, at the beginning of the class period on Thursdays during
those weeks when we are in the midst of lecture material (non-exam weeks). Quizzes are given
to help the student gauge their understanding of the weekly lecture material and the individual
“work ‘em out” questions on the projects. The lowest quiz score will be dropped and not count
toward the final course grade.
Exams I and II
The mid-term exams (I and II) will be primarily testing new material introduced since the previous exam or since the start of the semester.

Final Exam
The final exam is a comprehensive exam in which all the material contained in the entire course is testable. Participate in the national weather forecast competition and earn five points on the ATMS 411 final exam. “Win” the forecast contest for all students enrolled in Synoptic II and earn seven points on the final exam.

Assignment/Quiz/Exam Policy
Assignments are to be handed in before the start of lecture on the date they are due. Assignments handed in after the start of lecture are considered late until 4:30 pm on the day they are due and will have an automatic 10% deduction from their final score. Assignments handed in after 4:30 pm on the day they are due will receive no credit.

Quizzes and Exams are written tests and will be taken on the date they are scheduled, unless circumstances (e.g. medical or loss in the family) warrant. Make-up quizzes and exams for special circumstances will consist of an individual oral graded question and answer session at a mutually agreed upon time outside of the usual class meeting time.

Extra Credit
Participate in the national weather challenge forecast competition (ask Dr. Hennon for details) and earn five points on the ATMS 411 final exam. “Win” the forecast contest for all students enrolled in Synoptic II and earn seven points on the final exam.

Instructor
Doug Miller
232-5158
http://facstaff.unca.edu/dmiller/
dmiller@unca.edu

Textbook
“Mid-Latitude Weather Systems” by T. N. Carlson © 1998. References are used extensively and are given on the final page of each lecture packet.

Disabilities
Contact Prof. Miller early in the course if you have a disability that requires special accommodation.

Academic Integrity
Cheating or plagiarism results in a failed assignment, quiz, or exam on the first infraction. A second infraction results in course failure and a report to the UNCA administration. See http://www.unca.edu/catalog/academicregs.html under “Student Responsibilities” for a refresher on the UNCA policy.