
 

Increasing the Utilization of Weather Data for 

Safety Applications and Traveler Information 

 

Venkata R. Duddu, Ph.D. 
Srinivas S.  Pulugurtha, Ph.D., P.E. 
Ajinkya S. Mane, M.Tech. 
Christopher M. Godfrey, Ph.D. 
Matthew D. Eastin, Ph.D. 
Jacob Radford, Ph.D. Student 

NCDOT Project 2016-13 

FHWA/NC/20YY-NN 

August 2017 



 
Increasing the Utilization of Weather Data for 
Safety Applications and Traveler Information 

 
 
 
 
 

Draft Final Report 
 

Submitted to 
 

North Carolina Department of Transportation 
Research and Development 

 
 
 
 

by 
 
 
 
 

Venkata R. Duddu, Ph.D., E.I. 
The University of North Carolina at Charlotte 

 
Srinivas S. Pulugurtha, Ph.D., P.E. 

The University of North Carolina at Charlotte 
 

Ajinkya S. Mane, M.Tech. 
The University of North Carolina at Charlotte 

 
Christopher M. Godfrey, Ph.D. 

The University of North Carolina at Asheville 
 

Matthew D. Eastin, Ph.D. 
The University of North Carolina at Charlotte 

 
Jacob Radford, Ph.D. Student, 

North Carolina State University  



ii 
 

Technical Report Documentation Page 

1.  Report No.  
FHWA/NC/2016-13 

2.  Government Accession  
No. 

3.  Recipient’s Catalog No. 
 

4.  Title and Subtitle 
Increasing the Utilization of Weather Data for Safety 
Applications and Travellers Information 

5.  Report Date 
August 16, 2017 

 6.  Performing Organization Code 
 

7.  Author(s) 
Venkata R. Duddu, Srinivas S. Pulugurtha, Ajinkya Mane, 
Christopher Godfrey, Matthew D. Eastin & Jacob Radford 

8.  Performing Organization Report 
No. 

 
9.  Performing Organization Name and Address 
Infrastructure, Design, Environment, and Sustainability 
(IDEAS) Center 
Department of Civil & Environmental Engineering 
The University of North Carolina at Charlotte 
9201 University City Boulevard 
Charlotte, NC 28223 - 0001 
Telephone: 704-687-1233 
Fax: 704-687-0957 
Email: sspulugurtha@uncc.edu 

10.  Work Unit No. (TRAIS) 
 

  11.  Contract or Grant No. 
NCDOT Project # 2016-13 

12.  Sponsoring Agency Name and Address 
North Carolina Department of Transportation 
Research and Analysis Group 
Raney Building, 104 Fayetteville Street 
Raleigh, North Carolina 27601 

13.  Type of Report and Period 
Covered 

Final Report 
Aug. 16, 2015 – July 31, 2017 

  14.  Sponsoring Agency Code 
NCDOT Project # 2016-13 

Supplementary Notes: 
16.  Abstract 
The objectives of this study are 1) to evaluate the quality of available weather data, 2) to develop 
weather (fog / visibility) prediction models from historical weather data, 3) to predict weather at the 
route / link level for safety applications (crash analysis) and traveler information, and, 4) to research 
and recommend technologies for capturing fog / visibility information. The data collected using a 
visibility sensor is used to validate both statistical and back propogation neural netwok models, and 
assess the accuracy of numerical weather prediction models such as High-Resolution Rapid Refresh 
(HRRR) model and satellite-based model.  
17.  Key Words 
Fog, Visibility, Prediction, Model 

18.  Distribution Statement 
 

19.  Security Classif. (of this 
report) 

Unclassified 

20.  Security Classif. (of this 
page) 

Unclassified 

21.  No. of Pages 
 

22.  Price 
 

  



iii 
 

DISCLAIMER 

 

The contents of this report reflect the views of the authors and not necessarily the views of the 

University of North Carolina at Charlotte (UNC Charlotte), the University of North Carolina at 

Asheville (UNC Asheville) or the North Carolina Department of Transportation (NCDOT). The 

authors are responsible for the facts and the accuracy of the data presented herein.  The contents 

do not necessarily reflect the official views or policies of either UNC Charlotte, UNC Asheville, 

NCDOT or the Federal Highway Administration (FHWA) at the time of publication. This report 

does not constitute a standard, specification, or regulation. 

 

  



iv 
 

Executive Summary 

Low visibility and foggy conditions create safety issues for travelers. One way to address this and 

improve safety on roads is to provide real-time information to travelers using dynamic signs, radio 

broadcasts, or mobile applications. There is a variety of weather information available to help 

inform the use of traveler information systems, including the High-Resolution Rapid Refresh 

(HRRR) numerical model, widely-spaced surface weather observing stations across the state of 

North Carolina, and satellite observations. 

Fog is a highly localized phenomenon and it would be difficult and expensive to install 

visibility sensors every few miles along roads. In an effort to identify appropriate meteorological 

data sources or new statistical models that may provide accurate and timely visibility information 

for North Carolina travelers, this study tackles the following objectives: 

• Evaluate the quality and utility of available meteorological data, 

• Develop statistical fog/visibility prediction models based on historical weather data, 

• Evaluate the accuracy of visibility forecasts at the route / link level for use in safety applications 

(crash analysis) and traveler information, and, 

• Research and recommend technologies for assessing fog / visibility conditions and provide 

real-time fog related weather data for safety applications and traveler information. 

Historical surface observations at airports across North Carolina were used to develop, 

both, regression models and a backward propagation neural network model in an effort to predict 

future visibility conditions. The authors also explored the use of short-term, high-resolution 

dynamical forecast model and visibility maps drawn using both Thiessen polygons and inverse 

distance-weighted interpolation methods. Additionally, the authors have also applied a novel fog-

detection algorithm to generate real-time satellite-based fog products across North Carolina. 

A visibility sensor was installed between December 2016 and May 2017 at five different 

locations to capture visibility conditions in different terrains and climate regions across North 

Carolina, including UNC Charlotte, Shelby, Lenoir, UNC Asheville, and Wilmington. The data 

collected using visibility sensor was used to validate both statistical and back propogation neural 

netwok models, and assess the accuracy of numerical weather prediction models. The report 

concludes with a discussion on available and needed technologies to help evaluate visibility and 

provide real-time fog related weather data for safety applications and traveler information.
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1. INTRODUCTION 

 

Weather is an influential factor which affects road safety. Extreme weather conditions such as 

dense fog and heavy rain can directly affect the level of safety on a road. All crashes that occur in 

adverse weather conditions (i.e., rain, sleet, snow, fog, severe crosswinds, or blowing snow / sand 

/ debris) or on slick pavement (i.e., wet pavement, snowy / slushy pavement, or icy pavement) are 

considered weather-related incidents. 

According to the Federal Highway Administration (FHWA), there are over 5,870,000 

vehicle crashes each year. About 23% (around 1,312,000) of these crashes are weather-related. On 

average, 6,250 people are killed and over 480,000 people are injured in weather-related crashes 

each year. Research on crashes due to adverse weather conditions between 1995 and 2001 showed 

that nearly 80% of injury crashes occur in rain and 17% in snow or sleet, while fatal crashes in 

rain, sleet or snow, and fog account for 69%, 18%, and 13%, respectively (Goodwin, 2002). 

Visibility is critical to the task of driving and the reduction of visibility due to fog is a major 

traffic operation and safety concern. Fog presents a challenge to motorists and can result in 

significant safety concerns due to reduced visibility. According to the FHWA, around 31,500 

crashes occur each year due to fog, resulting in over 500 fatalities and 11,500 injury crashes. From 

2002 to 2012, there were 19,188 reported fog-related crashes in North Carolina (Oliver, 2013). 

According to the National Oceanic and Atmospheric Administration (NOAA; Glickman, 

2000), fog consists of a collection of suspended water droplets or ice crystals near Earth’s surface 

that leads to a reduction of horizontal visibility below 1 km (0.62 mile). Petterssen (1956) stated 

that fog is generally whitish in color. However, in the vicinity of local sources of pollution, it may 

be of dirty yellowish or grayish color. Furthermore, fog was categorized into three subsections 

with respect to air temperature (T): (1) Liquid fog (T > –10°C), (2) mixed phase fog (–10°C > T > 

–300C), and (3) ice fog (T < –30°C). Liquid fog consists of small water droplets suspended in the 

air. The liquid fog may be a mixture of water droplets, smoke, and fine dust, which reduces the 

horizontal range of visibility to less than 1 km. However, according to World Meteorological 

Organization (WMO; 1996), if the visibility is greater than 1 km, then the suspended particles are 

referred to as mist. 

Fog is categorized as radiation, inversion, and advection fog (Gultepe et al. 2007). 

Radiation fog typically occurs at night under clear skies with light winds and high relative 

humidity. Inversion fog forms because of a downward extension of a layer of stratus cloud, situated 
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under the base of a low-level temperature inversion. Advection fogs occur frequently when moist 

air moves over a cold surface, often near bodies of water. 

Several researchers have studied the effect of fog or smoke on traffic safety and indicated 

that driving in foggy conditions is a potentially dangerous activity. Some of the most recent 

research works include efforts by Trick et al. (2010), Abdel-Aty et al. (2011), Hassan & Abdel-

Aty (2013), Mueller & Trick (2013), Ahmed et al. (2014), Theofilatos & Yannis (2014), and Yan 

et al. (2014). A detailed description of these studies and other research efforts is presented in the 

literature review section. 

Fog has resulted in some terrible crashes over the years, and drivers are often caught 

unaware by sudden reductions in visibility (Hamilton et al. 2014). Applying fog prediction models 

or technological advances to evaluate or predict visibility conditions during fog events could help 

to provide advanced warning to motorists. Additionally, accurate meteorological data are essential 

for collision analyses to establish contributing factors for collisions. However, crash investigations 

in rural locations may have to rely on observational data from distant weather stations that may 

have recorded very different meteorological conditions. It might be possible to improve the 

reliability of such observations through predictive models or via technologies for establishing 

weather-related contributing factors for collision analyses. 

For motorists, the lack of timely data about potentially foggy conditions poses a significant 

threat. In particular, these conditions can result in severe injuries as some drivers choose much 

lower speeds than other drivers. Multiple vehicles (i.e., more than two) may collide as a result of 

these conditions. Since numerical weather prediction models can help to forecast weather 

conditions that may impact roads, it seems feasible that the extraction of data from these models 

could help to reduce weather-related crashes through the dissemination of such information to 

travelers in a timely manner. 

Another issue results from the analysis of collision data when weather data are linked to 

collision reports. As the distance between a point of interest and the nearest weather station 

increases, the likelihood of accurately assessing the weather condition at the point of interest 

decreases. This is particularly true during fog events due to the highly localized nature of the 

phenomenon. Therefore, a methodology for improved analyses and predictions of high-impact 

weather phenomena (in particular, fog) at the route level and the efficient and economical use of 

weather observations is critical. The objectives of this study, therefore, are to: 

• Evaluate the quality and utility of available meteorological data, 
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• Develop weather (fog/visibility) prediction models from historical weather data, 

• Predict and evaluate the accuracy of forecasted weather at the route / link level for safety 

applications (crash analysis) and traveler information, and, 

• Research and recommend technologies for capturing fog / visibility information and providing 

real-time fog related weather data for safety applications and traveler information. 

A review of past studies on the effect of fog on transportation safety, relevant predictive 

models, and various sources of historical and real-time meteorological data is presented in the next 

chapter. 

 

1.1 Organization of Report 

This research report is organized as follows. A detailed literature review on fog prediction models 

and effect of fog on traffic operations and safety is discussed in Chapter 2. Various weather data 

sources that are used to evaluate visibility are presented in Chapter 3. Data collection, data 

processing, and methodology adopted to develop the visibility prediction models are discussed in 

Chapter 4.  Chapter 5 discusses the models developed, while validation of the models developed 

are presented in Chapter 6. Currently available technologies and limitations are discussed in 

Chapter 7. Conclusions from this research study are presented in Chapter 8. 
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2. LITERATURE REVIEW 

 

The literature review is presented in two parts. The first part focuses on previous studies related to 

fog prediction models using various scientific techniques such as numerical modeling, remote 

sensing, and Geographic Information Systems (GIS). The second part reviews past studies on the 

impact of fog on transportation operations and safety. 

 

2.1 Fog Prediction Models 

Among the early fog studies, Peace (1969) analyzed the geographical distribution of fog within 

the United States using 256 first-order weather stations and isopleths in regional analyses. Peace 

(1969) noted that heavy fog occurred, on average, more than 20 days a year based on the 

observations from 229 of those weather stations. Here, heavy fog was defined as a visibility of less 

than one quarter of a mile. Similarly, Hardwick (1973) analyzed the annual and monthly 

geographic distribution of heavy fog to incorporate monthly distributions of fog parameters in 

forecasting visibility. 

The presence of fog generally corresponds with small dewpoint depressions (i.e., the 

difference between the air temperature and the dewpoint temperature). When the dewpoint 

depression is less than roughly 2.5-4.0°C, fog typically forms. However, Baker et al. (2002) have 

modeled the occurrence of fog based on the crossover temperature (Txover), which is equal to the 

minimum dewpoint temperature observed during the warmest daytime hours in the preceding day. 

In their study, fog is forecasted when the surface air temperature is expected to cool a few degrees 

below the crossover temperature, rather than a few degrees below the dewpoint temperature. Baker 

et al. (2002) concluded that if the surface temperature is equal to Txover, their model generally 

forecasts one- to three-mile visibilities in mist. If surface temperatures are less than or equal to –

3°F less than Txover, then the model generally forecasts half-mile visibility or less, under the 

assumption that turbulent mixing does not prevent fog formation. 

Past studies have considered various parameters in fog assessments. Meyer et al. (1980) 

showed that visibility in foggy conditions is a function of droplet number concentration (Nd). In 

early research studies, due to the unavailability of advanced measuring instruments, continuous 

measurement of fog characteristics was a difficult task. However, Jiusto (1981) suggested that 

visibility is a function of both droplet size and liquid water content (LWC), concluding that LWC 

is directly related to droplet size. 
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Kunkel (1984) developed extinction coefficients and mean droplet terminal velocities in 

terms of LWC. In their study, 90 hours of droplet data were recorded at 5 m and 30 m above ground 

level for 11 life cycles of advection fog. The results obtained indicate that the visibility during 

foggy conditions is directly related only to LWC and the relationship between visibility and LWC 

is linear. 

Researchers have also used advanced numerical modeling techniques for fog prediction. 

Bergot et al. (2005) studied the integration of observations with a one-dimensional numerical 

model in an attempt to forecast fog and low clouds at Paris’s Charles de Gaulle International 

Airport, France. Their study results indicate that including boundary layer observations within the 

model will result in a more accurate short-term weather forecast. Gultepe et al. (2007) state that 

one-dimensional models are the simplest approach for numerical simulation of fog. One-

dimensional models are based on the assumption that the thermodynamic variables remain 

horizontally homogeneous. The occurrence of fog using this method generally considers the 

atmospheric radiation field, turbulent mixing, and the interaction of moisture and heat at the 

Earth’s surface. However, the actual dynamic processes in nature are not considered in this model 

and it thus failed to produce reasonable predictions for fog events. 

Bott et al. (1990) developed a one-dimensional radiation fog model for studying the 

interactions between atmospheric radiative transfer processes and microphysical processes within 

fog. The model was used to measure and predict fog events. Bott (1991) extended this work by 

focusing on land-atmosphere interactions. Different physicochemical properties of aerosols and 

their impact on fog formation at urban, rural, and maritime locations was investigated. 

Gultepe et al. (2006) formulated a relationship that expresses visibility as a function of 

LWC and Nd. They developed and tested a mesoscale model using 10-hour forecasts on a 0.62 mile 

1-km (0.62 mile) nested domain covering the region within 50 km (31 miles) of the Zurich Unique 

Airport in Switzerland. They found differences in visibility forecasts between the old and new 

parameterizations of over 50% and concluded that accurate visibility estimates require appropriate 

forecasts of both LWC and Nd. Similarly, Gultepe and Milbrandt (2007) measured LWC, Nd, and 

temperature simultaneously via instrumentation in southern Ontario, Canada. Using the Canadian 

Mesoscale Compressible Community (MC2) model, they showed that visibility is nonlinearly 

related to both LWC and Nd. 

A few researchers have approached the fog forecasting problem from a probabilistic 

perspective.  Müller et al. (2007), for example, used an ensemble of one-dimensional fog 
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parameterization schemes coupled with several three-dimensional numerical weather prediction 

models to assess the skill of the one-dimensional fog forecasts. They found that fog forecasts are 

reasonably accurate when horizontal advection is considered. 

Statistical or empirical techniques have also been used to forecast fog in the past. Vislocky 

and Fritsch (1997) developed linear regression fog prediction models, while Hilliker and Fritsch 

(1999) developed logistic regression fog prediction models. Marzban et al. (2006) compared an 

artificial neural network approach with both linear and logistic regression methods to forecast 

ceiling height and visibility, concluding that the artificial neural network approach produces better 

fog forecasts. Newer approaches include fuzzy logic, which considers the uncertainty in qualitative 

variables such as dewpoint (dry, moderate, moist and very moist), spread (unsaturated, saturated 

and very saturated), rate (drying and saturating), wind (too light, excellent and too strong), etc. 

(e.g., Sujitjorn et al. 1994; Murtha 1995; Hansen 2000), and decision-making processes, which 

follow a graphical approach that follows a set of rules (e.g., Colquhoun 1987). The application of 

decision-making processes, however, remains challenging, so this approach in fog and visibility 

forecasting has been limited.  

Meyer and Lala (1989) analyzed the seasonal and diurnal timing as well as the five primary 

synoptic setups leading to radiation fog in Albany, New York. They found that initial relative 

humidity and nocturnal cooling rate are key parameters for predicting the onset of fog. Further, 

they noted that radiation fog occurs under clear skies with wind speeds under 1 m s-1 as 

temperatures drop from 2°C to 12°C. Similarly, Friedlein (2004) analyzed dense radiation and 

advection fog events at Chicago O’Hare International Airport, Illinois. Though fog is prevalent at 

all hours during winter, analyses indicate that fog occurred most often during the nighttime, 

predawn, and dawn hours of all seasons. As an example, Figure 1 shows the breakdown of dense 

fog observations by hour of the day during July 1996–2002. Wind speed was observed to be a 

major influential factor for fog occurrences, with 84% of fog events occurring at wind speeds of 7 

knots (8 mph) or less. 
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Figure 1 Dense Fog Observations by Hour of Day during July 1996-2002 (Friedlein, 2004) 
 

Ward and Croft (2008) studied fog occurrences in the New York metropolitan area using 

GIS. They considered 15 fog events during a single winter season and assessed the meteorological 

conditions as measured by both Automated Surface Observing System (ASOS) sites and satellite 

imagery. They replicated conditions favorable for fog within an ArcGIS environment by using 

inverse distance-weighting interpolation techniques. 

Several authors have considered satellite data as a fog-detection technique. Ellrod (1995) 

developed a technique for detection of fog and low clouds at night using multispectral infrared 

(IR) imagery from Geostationary Operational Environmental Satellites (GOES). Ellrod (1995) 

used two GOES IR window channels at 10.7-11.2 μm and 3.9 μm to estimate the thickness of 

ground fog, noting that a patch is fog that is generally thicker in its interior compared with its 

boundary. A regression relationship between the thickness of fog based on aircraft pilot reports 

and the brightness difference between two IR windows (11.2 and 3.9 μm) was then developed. It 

was observed that the two variables are highly correlated with a correlation coefficient of 0.94, 

though this method may not be able to differentiate between ground fog and altocumulus layers. 

Similarly, Ellrod and Gultepe (2007) studied low clouds at night using infrared (IR) imagery from 

GOES, concluding that low ceilings and visibilities tend to occur when the difference between the 
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surface temperature and the GOES 10.7 μm IR cloud top brightness temperature is less than 3°C.  

Additionally, Whiffen et al. (2004) studied fog-related motor vehicle crashes in Canada and 

assessed the feasibility of using multispectral satellite imagery for fog detection. They also 

provided a comprehensive list of potential mitigation strategies to reduce fog-related crashes. 

Tardif and Rasmussen (2007) studied the characteristics of fog events in the New York 

City area, using 20 years of climatological data to classify fog types into five categories with an 

objection categorization algorithm (Table 1). They defined a fog occurrence as one in which the 

observed visibility is less than 1.6 km (1 statute mile) during fog, ground fog, or ice fog. They 

found that the marine environment may affect fog events and, in spring, advection fog tends to 

occur near coastal areas while radiation fog tends to occur in rural and suburban areas. 

Additionally, the urban heat island effect may reduce the probability of fog formation.  This study 

presents a clear case where climatological data can help to improve the understanding of fog 

formation and forecasting methods. Additionally, Guidard and Tzanos (2007) assessed fog 

probability based on a combination of surface observations and satellite data. It was concluded 

that a lack of cloud cover, rainfall rates less than 0.2 mm hr-1, 10-meter wind speeds greater than 

7 m s-1, and 2-meter relative humidity values below 90% are not compatible with the presence of 

fog. An algorithm that evaluates the risk of the presence of fog as proposed by Guidard and Tzanos 

(2007) is shown as Figure 2. 
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Table 1 Physical Reasoning Used to Classify Fog Events (Tardif and Rasmussen, 2007) 

 

 

Figure 2 Algorithm for the Assessment of Fog Probability (Guidard and Tzanos, 2007) 
 

Tardif and Rasmussen (2008) also analyzed meteorological factors and scenarios leading 

to the occurrence of precipitation fog in the New York City area. Their study indicates that 18% 
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of the analyzed precipitation events corresponded with fog events and that the majority of fog 

events occurred during light liquid precipitation. Most of the fog events occurred at high elevation 

stations due to upslope flow and attendant lowering of the cloud base. Since relative humidity is a 

function of temperature, they divided fog events into those that occurred due to moistening, 

cooling, moistening and cooling, or static conditions. An analysis of all fog events based on these 

tendencies indicate that moistening, cooling, moistening and cooling, and static conditions were 

observed for 42%, 25%, 10%, and 23% of the fog events, respectively. 

 

2.2 Effect of Fog on Traffic Operations and Safety 

According to a study in 1999 (Chin et al., 2002), the Oak Ridge National Laboratory has estimated 

that fog, snow and ice reduces the capacity of United States freeways and principle arterials by 

more than 11%. They also projected that nearly 544 million vehicle-hours of delay, or 23% of total 

delay, was caused by these weather events. In 1999, 13% of large truck crashes happened in rain, 

snow, sleet, hail, or under foggy conditions. Weather events even impact the productivity of the 

transportation system. Further, winter road maintenance accounts for 24% of road operating costs. 

Goodwin (2003a) studied the 2001 crash database of the National Highway Traffic Safety 

Administration (NHTSA) as well as the Fatality Analysis Reporting System (FARS). The study 

found that 75%, 18%, and 5% of the crashes occurred in rain, snowfall, and foggy conditions, 

respectively. Around 2% of crashes occurred during some combination of adverse weather 

conditions like sleet, rain, and fog. Out of the total number of crashes, 16% resulted in fatalities. 

Pisano et al. (2008) studied weather-related crashes in the United States between 1995 and 

2005. The investigation focused on driver behavior, crash risk, and regional variations in crash 

types and severity, along with the economic impacts of adverse road weather conditions. It was 

found that out of all weather-related crashes, 75% of those crashes occurred on wet pavement and 

that fog is involved in 2% of all crashes. The estimated annual cost of all weather-related crashes 

is between $22 billion and $51 billion. The study also suggested mitigation measures such as the 

installation of motorist warning systems, weather-related signal timing, access control, and speed 

management during adverse weather conditions. 

Goodwin (2003b) described mitigation measures adopted in 21 states by using 30 case 

studies in the United States. Advisory, control, and treatment strategies are generally adopted 

during adverse weather conditions to improve safety as well as mobility. The report also provided 
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a detailed description of real-time weather data collection techniques using environmental sensor 

technologies, along with roadway condition monitoring, to improve safety. 

Kang et al. (2008) examined the effect of reduced visibility due to fog on car-following 

performance. They observed that distance headway decreased in the densest fog conditions, root 

mean square (RMS) velocity error increased with an increase in fog density, and drivers had greater 

difficulty responding to changes in lead vehicle speed under foggy conditions. 

The Utah Department of Transportation (UDOT) provided the public with a “Weather 

Responsive Traveler Information System” and documented the implementation, findings and 

lessons learned from the implementation (Gopalakrishna et al., 2013). Their study was mainly 

aimed at encouraging agencies to be more proactive in managing traffic during inclement weather 

conditions. The UDOT developed an application that was driven by a citizen reporting system 

where individuals would report road weather condition with the primary goal to provide travelers 

with more accurate road weather forecasts and information on travel impacts. The public response 

to this project was quite positive. 

Pisano and Goodwin (2004) studied the effect of weather on various transportation 

systems. They documented various practices that are currently adopted in the United States to 

manage traffic under adverse weather conditions, including motorist warning systems and control 

strategies. Analyzing travel time data and surface weather, Pisano and Goodwin (2004) estimated 

a 10-12% reduction in average freeway speeds due to low visibility.  On the other hand, some 

motorists respond to poor visibility conditions by slowing down, while others do not. While the 

general recommendation was to maintain larger headways during poor visibility, many drivers 

seem to simply follow the taillights of the vehicle ahead. 

Travel information plays a significant role in reducing crash risk on roads. Al-Ghamdi 

(2007) evaluated the performance of a fog detection and warning system installed on a two-lane 

rural road in southern Saudi Arabia. This warning system includes visibility sensors that 

automatically activate a variable message sign that posts an advisory speed when hazardous 

conditions are present. The study involved the collection of vehicle speed, traffic volume, vehicle 

classification, headway, time of day, and visibility. Activation of the warning system reduced the 

mean speed in the experimental road section by about 6.5 k.p.h., but the mean speed still remained 

higher than the posted advisory speed. Drawing from relationships between mean driving speed 

and the number of crashes, they noted that a speed reduction of only 5 k.p.h. would yield a 15% 

decrease in the number of crashes. 
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Abdel-Aty et al. (2011) performed a comprehensive analysis of crashes related to visibility 

obstructions by comparing fog- and smoke-related crashes to clear visibility crashes. They found 

that lighting conditions adversely affected fog- and smoke-related crashes and that foggy and 

smoky conditions pose a more deadly threat in terms of crash severity.  The odds ratio is as high 

as 3.24 when compared to clear visibility conditions. By considering variations in crash severity 

through an assessment of multiple contributing factors, it was found that head-on and rear-end 

crashes are the most significant crashes under foggy and smoky conditions. 

Shi and Tan (2013) analyzed the use of intermittent release measures in heavy fog with an 

improved cellular automation model in China. They studied the risk of rear-end collisions in fog 

and the intermittent release measures that are taken to reduce such risk. They developed a cellular 

automation model that considers driving behaviors in heavy fog. Two main driving behaviors were 

observed: 1) few drivers may become laggers in the queue as the space headway is greater than 

the visibility in heavy fog, and, 2) some drivers feel risky when driving in fog and speed to reduce 

space headways. The study revealed that traffic crash probabilities increase under heavy fog 

conditions compared with normal weather conditions. 

Balagh et al. (2014) developed a stochastic approach to model road crashes during winter 

in an effort to predict crashes based on driving conditions. Since most road safety prediction 

models are based on deterministic weather forecasts that are not able to capture changes in the 

likelihood of collision occurrence, this study used a probabilistic forecast model to improve the 

decision-making process. They developed a logistic regression model based on crash data to 

examine its ability to predict collision occurrence and compared it with various models that are 

available in the literature. The model outperformed the existing models and accurately predicted 

collision occurrences. 

Ahmed et al. (2014) conducted a feasibility study to examine whether or not 

meteorological observations collected at airports can be used for real-time road crash risk 

assessment at locations with recurrent fog problems. Typically, automated sensors at airport 

locations collect observations at least hourly and those observations are available in near real time. 

The meteorological observations from eight airports in Florida were paired with crash data in fog-

prone counties to show that reductions in visibility as reported at an airport are statistically related 

to nearby crash occurrences. It was concluded that real-time meteorological data from airports can 

be used for nearby roads (i.e., within 5 miles) to mitigate the increased risk of limited visibility. 



13 
 

Departments of transportation (DOTs) in several states have implemented warning systems 

in the past to reduce visibility-related crashes. Following a 193 vehicle crash on the I-10 Bay 

Bridge, Alabama DOT traffic managers implemented an intelligent transportation system (ITS) 

that detects fog on the Bay Bridge and other segments of I-10, automatically alters speed limits 

with variable speed limit signs, and modifies the lane configuration via lane control signs. In the 

state of California, the California Highway Patrol groups traffic into platoons when visibility is 

less than 500 feet and leads traffic through affected areas at a safe speed. Similarly, following an 

analysis of a 95-vehicle pileup on I-77 at the Virginia-North Carolina state line, Oliver (2013) 

suggested that information sharing across all the DOTs in the state and to travelers via media 

outlets could help to reduce the number of fog- and weather-related crashes. 

Ashley et al. (2015) studied the weather-related crash database within the FARS from 1994 

to 2011. The study focused on visibility-related (VR) crashes where smoke, fog, or blowing dust 

were observed at the time of the incident and weather-related vision-obscured (VO) crashes where 

a driver’s vision was obscured by weather and a weather-related vision hazard was reported. 

Spatiotemporal analyses of these crash types revealed that most fatal crashes occurred during the 

morning commute, during the cool season, and on state and US routes, while 72% of those fatal 

crashes occurred without a National Weather Service visibility-related advisory in effect. 

Mueller and Trick (2012) studied driving behavior under foggy conditions by considering 

variables such as a driver’s experience, average speed, speed variability, steering variability, and 

other factors. Under controlled conditions in driving simulators, participants were divided into 

groups of experienced and novice drivers based on license type and years of driving experience. 

They found that 25% of young novice drivers had collisions in foggy conditions, with higher 

speeds and steering variability pegged as the primary variables contributing to collisions. 

Yan et al. (2014) evaluated the speed control behavior of motorists under foggy conditions 

by categorizing road condition into three different scenarios of low risk, medium risk, and high 

risk. The low risk scenario corresponds with simple driving skills related to road alignment such 

as speed control, braking, steering, staying in the lane, and other vehicle control behavior. The 

medium risk scenario corresponds with skills related to car following, overtaking, route choice in 

an unfamiliar road network, and other factors. The high-risk scenario corresponds with a driver’s 

emergency speed response. With the addition of foggy conditions, drivers tend to reduce their 

speed in all three scenarios. More rear-end collisions occurred in the medium-risk and high-risk 

scenarios, while crash severity is reduced in the high-risk scenario due to slower speeds. 
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Theofilatos and Yannis (2014) examined the effect of traffic and weather characteristics 

on road safety. The results obtained indicate that the presence of precipitation led to higher crash 

rates, though it does not seem to increase crash severity. It was suggested that the use of real-time 

meteorological data may address gaps in the current literature, such as in studies covering urban 

and rural areas rather than major arterial roadways. 

Hassan and Abdel-Aty (2013) explored predicting real-time reduced visibility-related 

crashes on freeways using random forests technique (a data mining technique) and a logistic 

regression model. They considered factors such as vision obstruction (e.g., fog or heavy rain), 

crash type, lighting condition, and crash location. The results obtained indicate that higher 

occupancy rates downstream 10-15 minutes prior to a crash, coupled with an increase in the 

average speed downstream and upstream 5-10 minutes before the crash, increase the likelihood of 

a visibility-related crash occurrence. The model was able to predict 69% of crashes correctly, 

despite having no knowledge of driver factors and errors. 

Trick et al. (2010) researched the behavior of older drivers using a driving simulator under 

varying conditions of visibility (e.g., a clear day or fog), traffic density, and navigational 

challenges. Based on speed adjustment indices, they found that reduced visibility, increased traffic 

density, and navigational challenges reduce both driving speed and driving performance, noting 

that the interaction of these challenges produced a stronger response than any individual challenge. 

However, the combined effects of high-density traffic and navigational challenges reduced driving 

performance even further in foggy conditions compared with clear conditions. 
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3. WEATHER DATA SOURCES 

This chapter presents various weather data sources, such as historical data, real-time 

meteorological observations, and short-term forecasts, that are used to evaluate visibility 

condition. The data sources include the Integrated Surface Database (ISD), the North American 

Regional Reanalysis (NARR), and High-Resolution Rapid Refresh (HRRR) forecasts. 

 

3.1 Sources and Quality Control of Meteorological Data  

Historical meteorological data are critical for the development of models that could assist with 

short-term fog prediction. The ISD database from the NOAA/National Centers for Environmental 

Information (NCEI) contains hourly surface observations for over 20,000 locations across the 

world (Del Greco et al. 2006; Smith et al. 2011). This dataset contains a merged repository of both 

manual and automated surface observations from a variety of original data sources, including the 

ASOS, Automated Weather Observing System (AWOS), surface synoptic observations, and 

aviation routine weather report (METAR) observations (Smith et al. 2011).  The database includes 

hourly observations of 2-m air temperature, dewpoint temperature, precipitation, wind speed, 

atmospheric pressure, visibility, cloud cover, and present weather conditions. Some stations also 

report snowfall and snow depth. Before distribution, NCEI applies rigorous quality control 

procedures to the ISD data (Lott 2004; Smith et al. 2011), yet data quality problems still remain in 

the database (Godfrey 2015).  Such data problems can be handled effectively through additional 

quality-assurance algorithms. 

Airport observations provide a good source for real-time meteorological conditions, but 

the spatial coverage across North Carolina is poor, and each set of observations is only 

representative of a very small region immediately surrounding the airport (Godfrey 2015).  High-

resolution numerical weather prediction models, therefore, can provide short-term forecasts of 

deterministic variables for use as input to historically-derived logistic regression models in near-

real time on small spatial grids. 

The HRRR model (Pinto et al. 2015) is a real-time, 3-km horizontal resolution, hourly-

updated, cloud-resolving, and convection allowing numerical weather prediction model that 

assimilates radar data every 15 minutes. The HRRR model incorporates a variety of observational 

data through three-dimensional variational data assimilation (3DVAR) techniques. The HRRR 

output fields include both the horizontal and vertical dimensions. Therefore, it provides the best 

picture of the current state of the atmosphere across the entire continental United States. 
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3.2 Integrated Surface Database (ISD) 

The ISD is a comprehensive database consisting of information from more than 35,000 weather 

stations worldwide. Some of them date back to 1901. A total of 14,000 stations are active and 

collect information such as visibility, wind speed, wind direction, temperature, dewpoint, sea level 

pressure, station pressure, precipitation, altimeter setting, and cloud data. For this study, 238 ISD 

locations in and near North Carolina from January 1, 1979 to January 1, 2015 was collected and 

processed for analysis and modeling. Figure 3 shows the selected ISD stations in and around North 

Carolina. 

 

 

Figure 3 Selected ISD Stations 
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3.3 North American Regional Reanalysis (NARR) 

The NARR assimilates surface and upper-air observations into a 32-km forecast model to produce 

the most reasonable state of the atmosphere every three hours. Output variables for each grid 

(Figure 4) include air temperature and dewpoint temperature at 2-m above ground level (AGL), 2-

m relative humidity, 10-m zonal (east-west) and meridional (north-south) wind speed, accumulated 

precipitation, total cloud cover, surface visibility, ceiling height, air temperature at 10-m AGL, air 

temperature at 30-m AGL, soil temperature in the 0-10 cm and 10-40 cm layers, and moisture 

availability in the 0-100 cm layer. Even though NARR data is based on a forecast model, the 

weather data for a given time stamp can only be obtained after the time. For this study, data were 

available from January 1, 1979 to January 1, 2015. Since the  data from NARR were not available 

for every hour, it was not further explored in the modelling process. 

 

 

Figure 4 NARR Grid Point Locations 
 
3.4 High-Resolution Rapid Refresh (HRRR) 

The HRRR model is a NOAA real-time 3-km resolution model with 3-km radar data assimilation 

that produces short-term forecasts and are updated hourly. Forecast fields used in the present study 

include 2-m air temperature, 2-m dewpoint temperature, 2-m relative humidity, 10-m zonal and 

meridional wind speeds, accumulated precipitation, total cloud cover, surface visibility, ceiling 
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height, skin temperature, moisture availability, and downward shortwave radiation. Figures 5 and 

6 show examples of a two-hour forecast of surface visibility and air temperature in and around the 

state of North Carolina, respectively. 

 

Figure 5 Two-hour Forecasted Visibility Obtained from HRRR Forecasts 

 

Figure 6 Two-hour Air Temperature Obtained from HRRR Forecasts 
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3.4 Satellite Data  

Satellite data are the novel dataset used to identify fog at any location. Fog depth algorithm and 

real-time fog depth imagery are the two products developed by NOAA to continuously capture the 

metrological data. In the fog depth product, information from GOES is primarily used to detect 

fog or low clouds. From this information, the temperature difference between Infrared Band 2 

(3.9 µm) and Band 4 (10.7 µm) helps detect low clouds / fog. In addition, the real-time fog product 

is the most recent product to detect visibility for every one hour. Visibility is updated at 1-km 

resolution during daylight and at 4-km resolution at nighttime.  A detailed description of satellite 

data sources is explained in section 4.3.   
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4. METHODOLOGY 

 

The methodology adopted for analysis and modeling is described in this chapter. 

 

4.1 Selection of Data Source for Modeling Visibility 

ISD data source is based on the data collected at the weather stations. It is an actual representation 

of weather condition at a specific location. However, weather stations are generally located at 

important locations only. HRRR is a forecasting model where different weather parameters are 

forecasted at grid points that are spaced distinctly. Further, NARR data source is a 32-km (medium 

resolution) model that ingests actual observations for every three hours. However, ISD and HRRR 

data sources provide the information for every one-hour interval. NARR data source was not 

considered since it only provides information for every three hours. 

To select the data source among ISD and HRRR for the development of visibility 

prediction models, it is necessary to compare the information obtained from these two different 

data sources. Visibility values obtained from both the data sources (ISD and HRRR) were 

compared using Absolute Percentage Error (APE). 

 

Absolute Percentage Error = �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

� ×  100     (4.1) 

 

In Equation (4.1), weather station data (ISD) was considered as the actual value and HRRR 

model output was considered as the predicted value. 

ISD and HRRR data from July 6, 2016 to August 15, 2016 was compared to check the 

accuracy of HRRR dataset. Table 2 indicates the classification of APE while comparing ISD and 

HRRR data sources. The results obtained indicate that majority of the errors were less than <50% 

(moderately high) and between the range of 15,000 m and 2,000 m. In addition, ISD represents the 

actual weather condition at a specific location. Therefore, ISD dataset was used for visibility 

prediction model development. 

 

4.2 Data Processing 

Data processing is an important step before the development of visibility prediction models. The 

data was processed to remove any missing values and outliers from the data. Further, raw data was 
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acquired in comma separated file format and size of each database was more than 500MB. Hence, 

Microsoft SQL Server 2016 was used for data processing. 

Firstly, ISD dataset was imported and the database was generated in SQL server. Secondly, 

all the missing values and outliers were deleted from the database by using SQL Server queries. 

Moreover, literature review suggested that rainfall in previous hours and time-of-the-day could 

influence the occurrence of low visibility conditions. Therefore, two sets of dichotomous variables: 

rainfall and time-of-the-day were added to the database. Dichotomous variables, such as rainfall 

in past three hours (Rain 3hr), three to six hours (Rain 6hr), six to twelve hours (Rain 12hr), and 

twelve to twenty-four hours (Rain 24hr) were added to the database. Further, to address time-of-

the-day, six dichotomous variables, such as, time from 12 AM to 4AM (Time 4am), 4 AM to 8 

AM (Time 8am), 8 AM to 12 PM (Time 12pm), 12 PM to 4 PM (Time 4 pm), 4 PM to 8 PM (Time 

8 pm), and 8pm to 12 AM (Time 12 am) were added to the database. 

Similarly, the presence of water body within the vicinity of weather station may influence 

the occurrence of fog. Therefore, all the water bodies in the state of North Carolina was acquired 

and imported in ArcGIS shapefile format using latitude and longitude coordinates. To check the 

presence of water body within the vicinity of the weather station, 1-mile buffer was generated 

around each weather station and the generated buffers were intersected with the water body 

shapefile. Finally, in the database, a dichotomous variable named as “Water” was created to 

represent the presence of water body within a mile of weather station. Final dataset consists of 

hourly information of all the weather stations in the state of North Carolina and also the additional 

variables such as rainfall, time-of-the-day and the presence of water body.  

In addition to the above database, one more database was generated by selecting only the 

weather stations which are located within a mile of road network (state routes, US routes and 

interstates). As one of the objectives of this study is to inform the road users about the low visibility 

condition, selecting the weather station within a mile of roadway network could help improve the 

performance visibility prediction models. 
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Table 2 Classification of Absolute Percentage Error within the Visibility Range 

Range #Sample 
Absolute Percent Error Sum 

(%) <5 5 - 10 10 -20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-
100 

100-
200 

200-
300 >300 

43000-40000 14 - - - - - - - - - - - 0.07% - - 0.07 
40000-35000 65 - - - - - - - - - - - 0.32% - - 0.32 
35000-30000 322 - - - - - - - - - 0.26% 0.67% 0.63% 0.01% 0.01% 1.58 
30000-25000 804 - - - - - - 0.74% 1.43% 1.12% 0.60% - 0.04% - 0.01% 3.94 
25000-20000 1217 - - - 1.22% 1.87% 1.88% 0.82% - 0.01% 0.01% 0.01% 0.06% 0.02% 0.06% 5.97 

20000-15000 1989 3.70% 2.24% 2.45% 0.84% 0.06% 0.08% 0.04% 0.02% 0.03% 0.01% 0.02% 0.10% 0.05% 0.11% 9.76 
15000-10000 6438 0.30% 1.83% 6.34% 9.92% 12.23% 0.06% 0.07% 0.15% 0.06% 0.05% 0.01% 0.22% 0.10% 0.23% 31.59 
10000-5000 8028 1.03% 0.30% 1.98% 3.21% 10.47% 17.61% 1.58% 1.16% 0.12% 0.08% 0.07% 0.59% 0.21% 0.99% 39.39 
5000-3000 469 0.03% 0.02% 0.03% 0.05% 0.02% 0.11% 0.13% 0.36% 1.29% 0.15% 0.00% 0.03% 0.02% 0.04% 2.30 

3000-2000 195 0.00% 0.00% 0.01% 0.01% 0.02% 0.03% 0.01% 0.04% 0.09% 0.67% 0.01% 0.01% 0.01% 0.02% 0.96 
2000-1000 206 0.00% 0.01% 0.02% 0.01% 0.01% 0.02% 0.01% 0.05% 0.04% 0.34% 0.46% 0.01% 0.01% - 1.01 

1000-0 558 0.01% 0.00% 0.01% 0.01% 0.01% 0.03% 0.02% 0.03% 0.07% 0.13% 2.35% 0.00% - 0.04% 2.74 
0 77 - - - - - - - - - - 0.37% - - 0.00% 0.38 

Total 
 # Sample 20382              100.00 
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4.3 Develop Models 

Fog is a highly localized phenomenon. Therefore, predictions and nowcasts for the occurrence of 

fog are extremely difficult without direct observations. Variables such as air temperature, 

humidity, pressure, dew point temperature, cloud cover, cloud height, and wind speed were used 

to develop a statistical prediction model (linear regression models) and forecast the likelihood of 

fog and/or low visibility at any location across North Carolina. The models incorporated hourly 

weather observations from the nearest geocoded stations, high-resolution topographic maps of the 

study area, and prescribed distributions of near-surface atmospheric lapse rates (which will account 

for temperature changes resulting from differences in elevation between a given location and its 

nearest weather station) to predict visibility. Also, similar to the regression models, the neural 

network models were also developed for predicting the range of visibility. 

To evaluate visibility at any given location (point or route), the geocoded weather station 

data was used to divide the entire study area (North Carolina) into Thiessen or proximal zones. 

This process was done by generating Thiessen polygons, by triangulating the point input features 

(location of weather stations) into a triangulated irregular network (TIN) that meets the Delaunay 

criterion. Each Thiessen polygon consists of only one weather station. The developed Thiessen or 

proximal polygons indicate that any location (route or point) within a Thiessen polygon is closer 

to its associated weather station than to any other weather station in the proximity. The weather 

(fog/visibility) observed at a given weather station can be assigned for all the routes in the polygon 

associated with the weather station. This method could help evaluate the presence of fog or reduced 

visibility at any given point in the entire state of North Carolina, given that data from all weather 

stations in the state are available. However, creating proximity zones and assessing fog or visibility 

accurately at the route / link level could be cumbersome and would lead to inaccurate results if the 

number of weather stations is observed to be too low or if data are missing. 

Given that many weather station sites do not report hourly observations continuously 

without some gaps, it is more likely that spatial interpolation methods would be necessary to 

evaluate weather condition at locations distant from a weather station site. Kriging is the most 

reasonable geospatial interpolation method, provided adjustments are made to the temperatures 

using observed or modeled low-level lapse rates. Spatially-interpolated meteorological variables 

was combined with prediction models to improve the accuracy of weather data for safety analysis 
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and traveler information. Analysis using the proximal zones was compared with analysis from an 

interpolation method to evaluate the effectiveness of both methods. 

 

4.4 Compare and Validate Data 

To evaluate the accuracy of the visibility prediction models (by comparing the predictions with 

actual observations at various locations), a visibility sensor was purchased. Five different locations 

that are geographically distributed across the state of North Carolina were selected for data 

collection; 1) UNC Charlotte Campus, Charlotte, NC, 2) Lincoln County Maintenance Yard 

(NCDOT), 3) Salt Bin, Caldwell County Maintenance Yard (NCDOT), 4) UNC Ashville Campus, 

and 5) NCDOT Division Office at Wilmington. The locations were selected such that they cover 

piedmont, mountainous and coastal areas. The visibility sensor was installed at each location and 

the data was retrieved after a minimum of 20 days. Table 3 shows the schedule of data collection 

at all the five locations. 

The data collected from the visibility sensors was processed to compare and evaluate the 

accuracy of developed models (regression models and neural network models), ISD dataset, and 

HRRR dataset. 

 

Table 3 Data Collection Schedule 

Location Date 
Installed 

Date 
Uninstalled 

Total Number 
of Days 

UNC Charlotte Campus 12/15/2017 2/2/2017 47 
Lincoln County Maintenance Yard 
(NCDOT) 2/2/2017 2/23/2017 21 

Salt Bin, Caldwell County Maintenance 
Yard (NCDOT) 2/23/2017 3/23/2017 27 

UNC Ashville Campus 3/23/2017 4/13/2017 21 
NCDOT Division Office at Wilmington 4/20/2017 5/10/2017 21 
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5. VISIBILITY PREDICTION MODELS 

 

This chapter presents various models that are developed to predict visibility. Four different 

methods were adopted to predict the visibility. They are: 

• Linear regression models 

• Neural network models 

• Thiessen polygon method 

• Geographical interpolation method 

 Each of these methods and their results are discussed in detail in the following sections. 

 

5.1 Linear Regression Models 

Regression-based prediction models were developed using weather data obtained from weather 

stations as it represents the actual scenario of weather at different locations. Four years of weather 

data from January 2011 to December 2014 was used for model development. Two sets of 

regression models were developed. The first set of regression model was developed based on the 

data obtained from all weather stations in the state of North Carolina, while the second set of 

regression models were developed based on the data obtained from weather stations that are 

located within a mile of the road network in North Carolina. The visibility values were observed 

to have a huge range (0 m to 15,000 m) and were also observed to vary significantly with elevation. 

Figure 7 and figure 8 show the average annual frequency of visibility less than 1000 m and 2000 

m observed at weather stations in North Carolina, respectively. From the figures, it can be observed 

that the frequency of low visibility condition (< 41 times in year) is very low in most parts of North 

Carolina. However, in mountainous regions the frequency of low visibility conditions is observed 

to be higher compared other areas.  Therefore, multiple regression models were developed based 

on visibility (<15,000 m, <10,000 m, <5,000 m, and <2,000 m) and elevation (<50 m, 50 - 250 m, 

250 - 750 m, and >750 m). Overall, twenty different models were developed for each range of 

visibility considering all stations data and data from weather stations near the road network 

separately. In this process, data was first classified based on the different ranges of visibility and 

was further classified based on the respective elevations.  
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Figure 7 Average Annual Frequency of Visibility Less Than 1000 m 
 

 

Figure 8 Average Annual Frequency of Visibility Less Than 2000 m 
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The methodology includes the following steps: 

1. Selection of predictor variables contributing to visibility 

2. Development of regression models 

 

5.1.1 Selection of Predictor Variables Contributing to Visibility 

The descriptive statistics for the weather data with visibility less than 15,000 m is presented in 

Table 4. Variables such as elevation, cloud cover, speed cover, precipitation, and a difference of 

air temp and dew point temperature were considered as the independent / predictor variables for 

model development. Along with these variables, two dichotomous or binary variables such as 

rainfall and time-of-the-day were considered as independent variables in the model development. 

In addition, the presence of water within a mile of weather station was captured using ArcGIS and 

considered as a binary variable. 

 

Table 4 Descriptive Statistics for Visibility Data <15000m 

Variables Mean Std. 
Dev. Min Max Variable Type 

Visibility 8,718.46 4003 0 14,484 

Continuous 

Elevation 183.86 200.3 0 969.3 
Cloud Cover 53.15 46.55 0 100 
Wind Speed 1.55 2.02 0 26.3 
Precipitation 0.3135 1.61 0 78.5 

Air Temperature 
( – ) Dew Point 

Temperature 
1.8569 2.87 0 54 

Time 4 am - - 0 1 

Dichotomous 

Time 8 am - - 0 1 
Time 12 pm - - 0 1 
Time 4 pm - - 0 1 
Time 8 pm - - 0 1 
Time 12 am - - 0 1 

Rain 3 hr - - 0 1 
Rain 6 hr - - 0 1 
Rain 12 hr - - 0 1 
Rain 24 hr - - 0 1 
Presence of 

Water Bodies - - 0 1 
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5.1.2 Development of Linear Regression Models 

Ordinary Least Squares (OLS) and Weighted Least Squares (WLS) regression models were 

developed using STATA considering data for all weather stations in North Carolina and weather 

stations near the road network; twenty regression models based on visibility and elevation ranges. 

All the developed linear regression models are presented in Annexure A.  Independent variables 

with a level of significance (p-value) less than 0.05 (at a 95% confidence level) were considered 

to have a statistically significant effect on the dependent variable (visibility). Statistical measures 

such as R-square, Adjusted R-square, AIC, and Root Mean Square Error (RMSE) were computed 

to evaluate the performance of the models developed. 

 

5.1.2.1 Visibility Less Than 15,000 m 

OLS and WLS regression models were developed for predicting visibility less than 15,000 meters. 

A total of five OLS regression models were developed. The first model was developed by 

considering all the data. Other four models were developed for different elevations (<50 m, 50 m 

to 250 m, 250 m to 750 m, and >750 m) above Mean Sea Level (MSL). The results obtained 

indicate that predictor variables such as elevation, cloud cover, and precipitation are negatively 

associated with the visibility (Table A1 in Annexure A). From Table A1, the negative coefficient 

for elevation indicates that the visibility decreases by ~ 76m for every 100 m increase in elevation. 

Similarly, the visibility decreases by 183 m with 1 mm increase in precipitation, while the visibility 

decreases by 32 m with 1% increase in cloud cover. All other predictor variables that are 

considered in the model were observed to be positively associated with visibility. The positive 

coefficient for wind speed indicates that the visibility increases by ~230 m for every 1m/s increase 

in wind speed. This could be attributed to boundary-layer mixing during higher wind speeds 

resulting in reduced humidity leading to good visibility conditions. Likewise, rainfall in past three 

hours, three to six hours, and twelve to twenty four hours are positively associated with visibility 

indicating that past rainfall during these time ranges will not have an effect on visibility conditions. 

However, rainfall during past six to twelve hours is observed to be negatively associated with 

visibility. 

WLS models were also developed for predicting visibility less than 15,000 meters (Table 

A2). Similar to OLS models, five WLS regression models were developed. The first model was 

developed by considering all the data. Other four models were developed for different elevations 
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(Elevation <50 m, 50 m to 250 m, 250 m to 750 m, and >750 m). Table A2 shows the WLS models 

to predict visibility considering all data. Similar to OLS models, the WLS models also indicate 

that the predictor variables such as elevation, cloud cover, and precipitation are negatively 

associated with visibility and remaining all other variables are observed to be positively associated 

with the visibility. Moreover, the coefficient of predictor variables in WLS models is 

approximately consistent with respective OLS models. Even though the statistical measures of 

performance for both types of models are acceptable, the WLS model with an R-squared value of 

0.99 is observed to be better compared to the OLS model with R-squared value of 0.86.  Also, 

adjusted R-squared value is observed to be higher for WLS model (0.99) when compared to OLS 

model (0.86). In addition, AIC and Root Mean Square Error (RMSE) are found to be lower for the 

WLS model compared to the OLS model. Similar observations were noted in case of the other four 

models for different elevations. Therefore, WLS models were preferred over OLS models in 

further analysis. 

Similarly, OLS and WLS regression models were developed by considering the weather 

station data within 1 mile of the road network (Table A3 and Table A4, respectively). 

Approximately in all the models, the sign of the coefficients was found to be consistent when 

compared with the all-weather station models (Table A1 and Table A2 in Appendix A). The AIC 

value decreased substantially for WLS regression models that are developed by considering the 

weather stations near to roads as compared to WLS regression models developed by considering 

data from all the weather stations in the State of North Carolina. This indicates that WLS regression 

models may yield better estimates when weather station data near to roads were considered for 

model development. However, RMSE increased up to 50% when predicting visibility. 

Similar to the earlier models, models were developed by considering all the data with 

visibility less than 10,000 m, 5,000 m, and 2,000 m. Likewise, models were developed for different 

elevations (elevation less than 50 m, between 50 m to 250 m, between 250 m to 750 m, and greater 

than 750 m) for each range of visibility. In addition, OLS and WLS regression models were also 

developed by considering the weather stations within 1 mile of the road network. Overall, sixteen 

additional models were developed as shown in Appendix A. 

In all the developed OLS and WLS regression models, cloud cover was observed to be 

negatively associated with visibility (Appendix A). Further, in most of the OLS and WLS 

regression models where elevation, precipitation, and water were found to be significant, they were 
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observed to be negatively associated with the visibility. Conversely, in developed regression 

models where wind speed was found to be significant; it was positively associated with the 

visibility. Also, “tair_dew” (difference between air temperature and dew temperature) variable was 

found to be positively associated with the visibility in the majority of models. However, for some 

of the lower range visibility models (visibility < 5,000 m and < 2,000 m), “tair_dew” variable was 

observed to be negatively associated with the visibility.  In all the visibility prediction regression 

models, even though the coefficient of predictor variables was different, the sign of coefficients 

was observed to be consistent. The total number of observations considered for developing 

regression models for lower visibility conditions (<2,000 m and <5,000 m) was observed to be 

very low compared to sample size for other models (<15,000 m visibility). Therefore, to eliminate 

any bias and to have an improved model performance, WLS regression model developed 

considering sample from all weather station with visibility <15,000 m (Table A2) was used for 

validation purpose.  

5.2 Back Propagation Neural Network Models 

Artificial intelligence (AI) is an ability of a system that can independently perform tasks normally 

requiring human or animal intelligence (Nilsson, 1971). It is a system with an ability to learn, adapt 

and improve. The first known AI system is “Turing Machine” invented by Allen Turing in 1950. 

In the subsequent years, the research in the field of AI has grown rapidly and is sub-divided into 

many different areas based on their applicability to various fields in science and technology. Some 

of the applications that are commonly used in the field of civil engineering include Expert Systems, 

Genetic Algorithms, Intelligent Agents, Neural Networks, Logic Programming, and Fuzzy Logic. 

Each of the above-mentioned applications are used based on the type of problem to be addressed. 

Neural networks were chosen to develop the methods and models in this report. A brief 

description of neural networks and how it effectively helps solve the problem are discussed in the 

following sections. 

 

5.2.1 Neural Networks 
Artificial neural networks, also called as neural networks, is a computational model that mimic at 

least partially the structure and functions of brains and nervous systems of living beings (Cichocki 

& Unbehauen, 1993). In general, a neural network is a computational model composed of simple 
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processing elements called neurons or nodes, which are interconnected by links with weights that 

help perform parallel distributed processing in order to solve a desired problem. Neural networks 

have the ability to learn from the environment and to adapt to it in an interactive manner similar 

to their biological counterparts.  

The interest in the neural networks has grown dramatically in the fields of science and 

engineering in the last few years. A basic neural network model consists of set of nodes connected 

by the links that has numeric weights associated with them. Each node has a set of input links from 

other nodes and a set of output links to other some nodes. The nodes from the input links are 

connected to an activation function to compute the activation level at the next time step. 

Figure 9 shows a model of an artificial neuron. The inputs to the artificial neuron are 

expressed in the form individual vector components, given as xi, for i = 1, 2, 3…, n. The entire 

input is given as a vector signal x ϵ ℜn×1, where, x = [x1, x2, x3, …., xn]T. Each input neuron ‘xi’ 

is connected to the neuron ‘q’ through a link called synapse, which is associated with a synaptic 

weight ‘Wqi’. The neuron ‘q’ receives an input from ‘xi’ as the product of the individual input 

vector component ‘xi’ and the weight ‘Wqi’ associated with it. Since, there are multiple inputs to 

the neuron ‘q’, all these inputs are multiplied with their respective synaptic weights and then 

summed as 𝑢𝑢𝑞𝑞 = ∑ 𝑊𝑊𝑞𝑞𝑞𝑞𝑥𝑥𝑞𝑞𝑛𝑛
𝑞𝑞=1 . The threshold or bias (-ve of threshold) 𝜃𝜃𝑞𝑞 is externally applied, 

usually to lower the cumulative input to the activation function. The activation function shown in 

the Figure 9 helps define the output ‘yq’ for a given input ‘uq’. From Figure 9, the output of the 

neuron ‘q’ can be written as, 𝑦𝑦𝑞𝑞 = 𝑓𝑓(𝑣𝑣𝑞𝑞) = 𝑓𝑓(𝑢𝑢𝑞𝑞 − 𝜃𝜃𝑞𝑞) = 𝑓𝑓(∑ 𝑊𝑊𝑞𝑞𝑞𝑞𝑥𝑥𝑞𝑞 − 𝜃𝜃𝑞𝑞)𝑛𝑛
𝑞𝑞=1 . For no threshold 

scenario, 𝑦𝑦𝑞𝑞 = 𝑓𝑓(𝑣𝑣𝑞𝑞) = 𝑓𝑓(𝑢𝑢𝑞𝑞) = 𝑓𝑓(∑ 𝑊𝑊𝑞𝑞𝑞𝑞𝑥𝑥𝑞𝑞)𝑛𝑛
𝑞𝑞=1  . The above explanation on neural networks is 

based on the work by Ham & Kostanic (2001). 
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Figure 9 Nonlinear Model of an Artificial Neuron 
 

One of the most popular neural networks is a layered neural network with a back-

propagation (BP) learning algorithm where the weights are adjusted based on least mean square 

error of the output. Neural networks could also be used for prediction purposes by using BP 

architecture. The use of BP architecture in the neural networks let the network learn an 

approximation of mapping (pattern) between inputs and outputs by updating its synaptic weights 

along with error minimization in order identify the implicit rules and relationship between the 

inputs and outputs. Along with the prediction, neural networks can also be used for various other 

applications such as optimization, forecasting, associative memory, function approximation, 

clustering, data compression, speech recognition, non-linear system modeling and control, pattern 

classification, feature extraction, solutions to matrix algebra problems and differential equations 

(Ham & Kostanic, 2001). 

A multi-layer feed-forward back-propagation network using the BP learning algorithm, 

which can also be referred to as a back-propagation neural network (BPNN) model, was developed. 

Typically, a BPNN model consists of three layers: input layer, hidden layer and output layer. 

The independent variables used in the statistical models have to be given as the input vector 

to the network. Therefore, the input layer has the number of neurons each of which corresponds to 

an independent variable in the model. The output layer has the number of neurons equal to the 

number of outputs. For example, the output layer of the model has a neuron each indicating the 

visibility as the dependent variable. Tangent sigmoid function and purelin function are used as 

transfer functions for hidden layer and output layer with Back-propagation function as training 
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function. BP is used to calculate the Jacobian ‘J’. Each variable is adjusted according to 

Levenberg-Marquardt as follows (MATLAB, 2016): 

Error (𝐸𝐸) = 1
𝑛𝑛
∑ (ĉ𝑃𝑃 − 𝑐𝑐𝑃𝑃)2𝑛𝑛
𝑃𝑃=1       (5.1) 

Error gradient (𝑔𝑔) = 𝐽𝐽𝐴𝐴𝐸𝐸      (5.2) 

Hessian Matrix (𝐻𝐻) = 𝐽𝐽𝐴𝐴𝐽𝐽      (5.3) 

Cost Function (𝐶𝐶) = 𝛽𝛽 ∗ 𝐸𝐸𝑃𝑃 + 𝛼𝛼 ∗ 𝐸𝐸𝑤𝑤    (5.4) 

where, Ed and Ew are sum-squared errors and sum-squared weights, respectively. 

(𝐻𝐻 + 𝜆𝜆Ι)𝛿𝛿 = 𝑔𝑔      (5.5) 

where, ĉ𝑃𝑃  and 𝑐𝑐𝑃𝑃 are predicted and observed visibility values, ‘I’ is an identity matrix,  

𝛽𝛽 𝑎𝑎𝑛𝑛𝑎𝑎 𝛼𝛼are scale parameters, and λ is the damping factor and is adjusted based on sum-squared 

errors.  

Equation (5.5) is solved to calculate ‘δ’ and the weights are updated based on the value of 

‘δ’. MATLAB was used to build the BPNN and train the network. The BPNN was trained such 

that the error term shown in Equation (5.1) and the cost function shown in Equation (5.2) are 

minimized. The readers can refer to Liang (2003), Liang (2005), MATLAB (2016) and Xie et al. 

(2007) for more detailed description of Bayesian regularization, Levenberg-Marquardt algorithm, 

and BPNN. 

The BPNN was trained using the data from all weather stations in North Carolina from 

2011 to 2014. All the variables obtained from station data such as elevation, relative humidity, 

wind speed, precipitation, month of the year, presence of water bodies, cloud cover, ceiling height, 

time-of-the-day (divided into 4 hour intervals), rainfall in past 3 hours, rainfall in past 3-6 hours, 

rainfall in past 6-12 hours and rainfall in past 12-24 hours are considered as input variables for the 

regression. The dependent variable (visibility) was divided into eight different classes (Table 5) 

based on the visibility range, as per the international standards: 

The number of neurons in the hidden layers is not limited to a fixed number. Therefore, 

appropriate number of neurons was evaluated by changing the number of neurons in the hidden 

layer until the network performs well after training. Figure 10 shows the neural network used to 

train the data. The network has two hidden layers with 10 and 5 neurons in each layer, respectively.  
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Table 5 Classification of Visibility Range as per the International Standards 
Visibility Description 

< 40 m Dense Fog (1) 

40 to 200 m Thick Fog (2) 

200 to 1000 m Fog (3) 

1 to 2 km Mist/Haze (4) 

2 to 4 km Poor Visibility (5) 

4 to 10 km Moderate Visibility (6) 

10 to 40 km Good visibility (7) 

> 40 km Excellent visibility (8) 

 

 
Figure 10 Neural Network Model Developed in MATLAB 

 

The performance of the network was evaluated by computing the mean squared errors. 

Figure 11 shows the performance of the neural network model. Figure 12 shows the error 

histogram for training, testing and validation data. Most of the errors are observed to be within ±1 

indicating, very low errors in predicting the visibility from the model developed. Figure 13 shows 

the regression for training, validation, testing and all combined. The R-squared value is observed 

to be 0.73 for all the four cases. The higher R-squared value indicates better predictive capability 

of the develop neural network model. 
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Figure 11 Performance of the Neural Network Model 
 

 

Figure 12 Error Histogram for Training, Testing and Validation Data 
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Figure 13 Regression for Training, Validation, Testing and All Combined 

 
The validation of the developed neural network model was performed using the data for 

years 2010 and 2015. Table 6 shows validation performance of the neural network model 

developed. From Table 6, the neural network model is observed to have better predictive capability 

for higher visibility conditions. However, for lower visibility conditions, it is observed to predict 

the most nearest range indicating a very low error in prediction. For example, in case of visibility 

range 40 to 200 m, 60% of the times the model has predicted a range on 200 to 1,000 m instead. 

Similarly, for less than 40 m visibility conditions, the model has predicted 40 to 200 m and 200 to 

1,000 m, 7% and 93% of times, respectively. 

 

Table 6 Validation of Neural Network Model 
Absolute Error 

Visibility 0 1 ≥ 2 Total 
10 to 40 km (7) 90% 10% 0% 100% 
4 to 10 km (6) 57% 41% 2% 100% 
2 to 4 km (5) 18% 72% 10% 100% 
1 to 2 km (4) 22% 38% 40% 100% 

200 to 1000 m (3) 48% 37% 15% 100% 
40 to 200 m (2) 0% 60% 40% 100% 

< 40 m (1) 0% 7% 93% 100% 
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5.3 Visibility at Link level 

This section provides four different algorithms/methods that were explored to identify the visibility 

at the route / link level: 1) satellite-based fog depth algorithm, 2) real-time fog depth imagery, 3) 

visibility maps based on Thiessen polygons, and, 4) visibility maps based on interpolation. 

 

5.3.1 Fog Detection and Fog Depth Algorithm 

The NOAA / NESDIS Forecast Products Development Team has developed an experimental 

satellite-based fog detection algorithm that produces fog depth color enhancement based on the 

temperature difference between GOES IR Band 2 (3.9 μm) and Band 4 (10.7 μm). This algorithm 

identifies the approximate depth of low-level clouds and fog.  Weinrab and Han (2011) developed 

equations to convert GOES Variable Format (GVAR) infrared data to both scene radiance and 

brightness temperature. In this study, an algorithm to produce real-time fog detection imagery and 

associated data files based on GOES-13 satellite imagery over North Carolina was adopted. 

The following examples illustrate the applicability of the fog detection product. The color 

steps show increasing fog depth, from green (0 - 200 m) to black (> 500 m). Light blue areas are 

cirrus clouds and gray areas are cloud-free. The fog depths obtained from this product are valid 

only for single cloud layers. After 1500 UTC, (i.e., during daylight hours), the fog detection 

algorithm can no longer identify fog due to the strong influence of reflected solar radiation on the 

radiance measured in GOES IR Band 2 (shortwave infrared). 

 

Example 1 

On the morning of February 23, 2017, dense fog was noted in the French Broad River valley near 

Arden, North Carolina in Buncombe County. Figure 14 indicates that fog with a depth of less than 

200 m is present in the valley, with deeper pockets of fog from I-40 in Buncombe County 

northward through Madison County. The 1144 UTC observation at the nearby Asheville Regional 

Airport (KAVL) corroborates this satellite-derived estimate. The ASOS station reports calm 

winds, fog, visibility of ~ 402 m (0.25 miles), and an indefinite ceiling through the fog with a 

vertical visibility of ~ 61m (200 feet). 
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Figure 14 Visibility Scenario from the Fog Depth Algorithm (February 23, 2017 at 1130 
UTC) 

 

Example 2 

On the morning of April 20, 2017, the National Weather Service issued a dense fog 

advisory for much of the Piedmont region of North Carolina and portions of the western mountains. 

The fog product (Figure 15) indicates widespread fog throughout the region. The Charlotte 

Douglas International Airport (KCLT) is within the dark blue region in the plot. The 1014 UTC 

ASOS observations here indicate fog, visibility of 1/4 statute miles, calm winds, and an indefinite 

ceiling through the fog with a vertical visibility of 100 feet. The Piedmont Triad International 

Airport (GSO) near Greensboro is in the green region of the plot. The 1027 UTC observation here 

indicates a 5-knot ( 5.758 mph) wind from 250°, visibility of 1.5 statute miles, mist (i.e., light fog), 

and overcast skies at 200 feet. 
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Figure 15 Output from Fog Depth Algorithm (April 20, 2017 at 1025 UTC) 

 

Example 3 

Dense fog was noted in the French Broad River valley near Arden, North Carolina on the morning 

of February 8, 2017. The 1246 UTC observations at the Asheville Regional Airport (KAVL) 

indicate calm winds, visibility of 1/4 statute miles, and fog with vertical visibility of 100 feet. 

Figure 16 shows the fog product for this event and indicates that cirrus clouds over Buncombe 

County are obscuring the low-level fog. This example shows that the fog product is only valid for 

single cloud layers. The 1235 UTC observations at the Smith-Reynolds Airport (KINT) near 

Winston-Salem, however, also indicate a reduced visibility of 1.75 statute miles in mist (i.e., light 

fog) and a ceiling of 200 feet. The fog depth product, Figure 16, indicates a low-level cloud depth 

of 300-400 meters at this location. 

As a whole, fog detection product is unique and a useful product for locating early morning, 

evening, and night time fog with high spatial resolution. 
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Figure 16 Output from Fog Depth Algorithm (February 8, 2017 at 1230 UTC) 

   
 
5.3.2 Real-Time North Carolina Satellite Products 

Imagery can be produced in near real time from GOES-13 GVAR (GOES Variable Format) data. 

In the present experimental form, images (examples, Figure 17, Figure 18, Figure 19 and Figure 

20) are available approximately every hour. Visible imagery at 1-km resolution is updated only 

during daylight hours. Infrared imagery is available at 4-km resolution. Note that the fog depth 

product is not valid during daylight hours after 1500 UTC. The most recent satellite data is just 

feed into to generate the fog product.  The visible imagery combined with the infrared imagery is 

useful for noting the presence of low-level clouds. However, information from these products 

alone cannot provide anything definitive about surface fog during daylight hours. 
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Figure 17 Output from Visible Satellite (May 22, 2017 at 1900 UTC) 

 

 
Figure 18 Output from Fog Depth Estimate (May 22, 2017 at 1900 UTC)   
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Figure 19 Output from Shortwave IR Satellite (May 22, 2017 at 1900 UTC)   

 
Figure 20 Output from Longwave IR Satellite (May 22, 2017 at 1900 UTC) 

 
 
5.3.3 Visibility Maps using Thiessen Polygons 

A GIS-based method is adopted to predict or nowcast weather conditions at the route / link level 

for dissemination of information to drivers in a timely manner. In this method, the geocoded 

weather station data is used to divide the entire study area into Thiessen or proximal zones. This 
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process is done by generating Thiessen polygons, by triangulating the point input features (location 

of weather stations) into a triangulated irregular network (TIN) that meets the Delaunay criterion. 

Each Thiessen polygon consists of only one weather station. The developed Thiessen or proximal 

polygons indicate that, any location (route or point) within a Thiessen polygon is closer to its 

associated weather station than to any other weather station in the proximity. The weather (fog / 

visibility) observed at a given weather station can be assigned to all the routes / links in the polygon 

associated with the weather station. Figure 21 represents the visibility condition for North Carolina 

and areas surrounding North Carolina on December 26, 2014 at 1700 UTC. At this particular date 

and time, visibility maps represent the visibility less than 5,000 m near Goldsboro, Tarboro, 

Greenville and New Bern in North Carolina. It is represented in fluorescent blue color in Figure 

21. Further, the visibility is between 5,000 m and 10,000 m in Roaring Gap, North Carolina (Dark 

green color). Visibility between 10,000 m to 15,000 is represented in light green color.  In all other 

places in North Carolina, visibility was more than 15000m at this particular date and time (Orange 

color). 

The Thiessen polygon method helps evaluate the presence of fog or reduced visibility at 

any given point in the entire state of North Carolina, given that data from all weather stations in 

the state are available. Also, fog is a localized phenomenon and size of the theissen polygons is 

dependent on the distance between the weather stations. Generally, weather stations are located at 

airports and are located far from each other.  Therefore, generated theissen polygons are very large 

compared to the localized phenomenon of visibility. Hence, creating proximity zones and 

assessing fog or visibility accurately at the route / link level could be cumbersome and would lead 

to inaccurate results. 

Since fog is a local phenomenon and weather stations are located far from each other, it is 

more likely that spatial interpolation methods would be help better evaluate weather condition at 

locations distant from an observation site. This method is discussed next. 
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Figure 21  Visibility using Thiessen Polygon (December 26, 2014 at 1700 UTC) 

 
5.3.4 Interpolated Visibility Maps 

The visibility at an unknown location in a given area could be computed through spatial 

interpolation. An inverse distance weighted interpolation method was used to evaluate the 

visibility at an unknown location based on the visibility information obtained from nearby weather 

stations. One of the assumptions of Inverse Distance Weighted (IDW) interpolation is that 

locations that are close to one another are more alike than those that are farther apart. Therefore, 

to predict visibility at any given location, IDW uses the visibility values surrounding the prediction 

location. The visibility values closest to the prediction location will have more influence on the 

predicted value than those farther away from the prediction location. This indicates that each 

visibility value has a local influence by giving greater weights to locations closest to the prediction 

location, and the weights diminish with an increase in the distance from the prediction location.  

R-statistical software was used to develop visibility maps for the state of North Carolina 

based on the visibility information obtained from the weather stations. Firstly, the coordinates of 
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each weather station were imported to create a spatial object of weather stations for North Carolina. 

A grid or extent (boundary) is defined such that it covers the entire state of North Carolina and its 

surroundings. The visibility was interpolated at each grid point using inverse distance weighting 

method based on the visibility from the weather stations. As the size of the grid decreases, the 

accuracy in the interpolation increases. Therefore, various grid sizes such as 0.75 Degree Lat/Long 

Grid (83 Km) – Figure 22, 0.50 Degree Lat/Long Grid (55 Km) – Figure 23, 0.25 Degree Lat/Long 

Grid (28 Km) – Figure 24, 0.10 Degree Lat/Long Grid (11 Km) – Figure 25, and 0.05 Degree 

Lat/Long Grid (5 Km) – Figure 26 were developed and tested. The figures indicate that as the grid 

size decreases, the accuracy in spatial representation of visibility increases. However, visibility 

maps are observed to be constant without any significant changes with grid sizes less than 0.25 

Degree Lat/Long Grid (28 Km). Therefore, for North Carolina, a grid size of 0.25 Degree Lat/Long 

Grid (28 Km) is recommended to evaluate visibility at route / link level. Similar to section 5.3.3, 

florescent blue grids indicate lower visibility, whereas orange color grids indicate higher visibility 

(>15,000 m). 

 

 
Figure 22 Visibility – 0.75 Degree Lat/Long Grid (December 26, 2014 at 1700 UTC) 

 



46 
 

 

 
Figure 23  Visibility – 0.5 Degree Lat/Long Grid (December 26, 2014 at 1700 UTC) 

 

 
Figure 24 Visibility – 0.25 Degree Lat/Long Grid (December 26, 2014 at 1700 UTC) 
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Figure 25 Visibility – 0.1 Degree Lat/Long Grid (December 26, 2014 at 1700 UTC) 

 
 

 
Figure 26 Visibility – 0.05 Degree Lat/Long Grid (December 26, 2014 at 1700 UTC) 
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6. VALIDATION  

 

This chapter presents the validation of developed models and also a comparison of visibility 

information obtained from different data sources. This could help to quantify the applicability of 

developed models and different data sources based on their accuracy in predictions. 

Validation was conducted in three different ways. All the three ways of validation are 

discussed next. As explained in “Methodology” chapter, for validation purpose, visibility data was 

collected using visibility sensor at five different locations (Table 7). Also, visibility data collected 

from visibility sensor was considered as the actual value of visibility since it provides the actual 

nearby visibility scenario at the installed location. Table 7 illustrates the nearby weather stations 

and their distance from the visibility sensor. It also shows the distance between the visibility sensor 

and nearest HRRR grid point. 

 

Table 7 Weather Monitoring Stations and HRRR Grid Point from Visibility Sensor 

Visibility 
Sensor Weather Monitoring Station 

Distance between 
Sensor and 

Weather Station 
(Miles) 

Distance between 
Sensor and 

Nearest HRRR 
Grid Point (Miles) 

UNC Charlotte 

Charlotte/Douglas International 
Airport (CLT) 13.23 

1.052 Monroe Airport 21.29 

Gastonia Municipal Airport 24.63 

Shelby 

Lincolnton–Lincoln County 
Regional Airport 4.26 

0.396 
Hickory Regional Airport 19.55 

Gastonia Municipal Airport 20.39 

Shelby Municipal Airport 25.80 

Lenoir 
Boone Airport 6.86 

0.906 
Hickory Regional Airport 28.65 

UNC Asheville Asheville Regional Airport 13.21 0.405 

Wilmington Wilmington International Airport 5.40 0.805 

 

6.1 Comparison of Visibility from Visibility Sensor with Nearby Weather Stations   

Both, visibility sensor (VS) and weather monitoring stations (WS) gather actual visibility values 

at the installed locations. However, it is difficult to install visibility sensor or obtain visibility 
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information from weather monitoring stations at each and every given location (say, a given point 

or a road link). Therefore, comparisons between visibility values from the visibility sensor and 

nearby weather stations may shed some light on the spatial correspondence between regional 

visibility observations. 

Weather stations within the range of 30 miles from visibility sensors were selected to 

compare the visibility values. Visibility sensor installed at UNC Charlotte, Shelby and Lenoir were 

considered for this analysis. Table 7 presents nearby weather stations for these locations. UNC 

Asheville and Wilmington data were not considered since only one weather station is located 

within the 30 miles from the installed location. 

Firstly, hourly visibility values from nearby weather stations were collected for the distinct 

dates, as presented in Table 7. All the missing data points were removed from the dataset. As per 

the international standards (Table 5), visibility values from visibility sensors and weather stations 

were classified into eight categories. Errors were computed by taking a difference between the 

visibility categories and are presented in Figure 27. 

Figure 27 (a) illustrates the error histogram of visibility from weather station compared 

with visibility sensor at UNC Charlotte. Here, positive error indicates that visibility information 

obtained from visibility sensor is higher than the visibility information obtained from weather 

station. Also, negative error indicates that visibility information obtained from visibility sensor is 

lower than the visibility information obtained from weather station. Further, zero error indicates 

that the visibility information obtained from both visibility sensor and weather station falls in the 

same visibility category. Most of the samples (~ 350 samples) were observed to have +1 error.  

The grey line indicates errors obtained by comparing visibility values at UNC Charlotte with 

visibility values from Gastonia weather station. The blue line and the orange line indicates errors 

from comparison of visibility values at UNC Charlotte with weather stations at Charlotte Douglas 

International Airport (KCLT) and Monroe airport, respectively. CLT weather station (13.23 miles) 

is closest to the visibility sensor installed at UNC Charlotte. Monroe and Gastonia weather stations 

are located ~ 21 miles and ~ 24 miles from the visibility sensor installed at UNC Charlotte, 

respectively. Similar results were observed when visibility sensor located at Shelby was compared 

with nearby weather stations [Figure 27 (b) and (c)].  
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(a) UNC Charlotte 

 
(b) Shelby 

 
(c) Lenoir 

Figure 27 Comparison of Visibility from Visibility Sensor with Nearby Weather Stations 
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6.2 Comparison of Visibility Values with All Data Sources 

Visibility information obtained from visibility sensor was compared with visibility computed from 

the WLS regression model (RM), nearest HRRR grid point, and nearest weather monitoring 

station. This comparison provides the applicability between the developed model, HRRR dataset, 

and ISD dataset to help identify the best source to evaluate visibility values at route / link level. 

Visibility sensor / weather station installed near the road link indicate the actual visibility 

scenario in the nearby area. Weather stations are generally installed at the airport and widely 

distributed across the state. However, it is a difficult and costly to install visibility sensor or have 

a weather station at every 5 miles / 10 miles apart on the roads. HRRR dataset provides forecasted 

visibility values for every hour and for grid sizes as small as 2-miles. 

Regression model requires various weather parameters to predict the visibility at a given 

location. Therefore, it is necessary to compare visibility from all the three sources with visibility 

from visibility sensor to identify the best source for evaluating visibility at route / link level. 

Four visibility sensor locations (UNC Charlotte, Lenoir, Shelby and UNC Asheville) were 

considered for the comparison. For each location, nearest HRRR grid point and the nearest weather 

station were considered. The weather data from these sources were collected for distinct dates 

which are summarized as shown in Table 7. For the regression model, weather parameters such as 

air temperature, dew point temperature, cloud cover, wind speed, precipitation, and elevation were 

collected from the nearest weather station. Hourly visibility was predicted for the distinct dates 

and for respective visibility sensor location using these parameters as an input to the regression 

model (Table 2). Similar to the earlier comparison, visibility values were classified into eight 

categories as per the international classification (Table 5). Further, visibility values obtained from 

HRRR, weather station, and regression model were compared with respect to visibility values from 

the sensor by computing the errors. Errors were computed for all the four locations by taking a 

difference between the visibility categories and are presented in Figure 28. 

Figure 28 (a) illustrates the error histogram of visibility from HRRR, regression model, 

and weather station compared with visibility sensor at UNC Charlotte. Nearest HRRR grid point 

is located at 1.052 miles from the installed visibility sensor location at UNC Charlotte. However, 

the nearest weather station is located 13.23 miles away from the sensor at UNC Charlotte. In this 

analysis, positive error indicates that the visibility at the visibility sensor location is higher than 

the visibility from HRRR, regression model, and weather station. Also, negative error indicates 
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that the visibility at the visibility sensor location is lower than the visibility from HRRR, regression 

model, and weather station. Further, zero error indicates that the visibility at the visibility sensor 

location and visibility from HRRR, regression model, and weather station fall in the same visibility 

category. 

 

 
Figure 28 Comparison of Visibility Values from Visibility Sensors with Nearest HRRR, 

Regression Model, and Nearest Weather Station 
 

Most of the samples (~ 200 samples) were observed to have +1 error.  Also, the number of 

samples with zero error were higher for HRRR dataset compared to weather station and regression 

model. Similar results were observed for all the four locations (Figure 28 (b), Figure 28 (c) & 
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Figure 28 (d)]. Therefore, HRRR model is observed to be a better predictive model compared to 

all other models considered in this study. 

 
6.3 Validation of Back Propagation Neural Network Models 

The weather data obtained from the nearest weather station of each location where visibility sensor 

was installed was used to validate neural network models. Overall, data with 938 samples were 

obtained from weather stations closest to the visibility after removing any missing records. The 

data was used as input to the neural network model to compute the classification of visibility as 

shown earlier in Table 5. Similarly, the visibility information collected using visibility sensor was 

also classified into eight categories according to international standards as shown in Table 5. The 

visibility classification from the neural network model output was compared with the actual 

visibility obtained from visibility sensors. Figure 29 shows the error histogram of visibility from 

neural network model compared with visibility sensor. Most of the samples (700 samples or 75% 

of samples) are observed to have zero error and more than 95% of the samples are with in ±2 

categories from the actual visibility obtained from the visibility sensor location. 

 

 
Figure 29 Error Histogram of Visibility from BPNN Model Compared with Visibility 

Sensor 
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7. TECHNOLOGIES AND LIMITATIONS 

 

There are several companies such as Campbell Scientific, Vaisala, and Belfort instrument which 

provide visibility sensors for installation at a given specific location. In this study, CS120A was 

purchased from Campbell Scientific which costs around $8,000 per unit (Figure 30).  

 

 

Figure 30 Visibility Sensor (Installed at UNC Charlotte) 
 

The procured instrument currently captures only visibility up to 75,000 m for every 1 minute. 

The limitations of instrument procured are: 1) it can capture only visibility information, 2) it 
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requires AC power to operate (battery / solar power option is also available), 3) data has to be 

manually downloaded, and, 4) it cannot be easily transported from one place to another. 

The regression models are only applicable to weather information collected from the weather 

monitoring stations in the state of North Carolina. To evaluate the accuracy of regression models, 

the visibility sensor equipped with the add-on features that collect temperature, dew point 

temperature, precipitation and cloud cover is required. With each add-on, the price of the 

instrument increases. These instrument store the data, but the captured data has to be downloaded 

manually for monitoring purpose. This visibility sensor has a limitation to transfer the data to a 

distinct place wirelessly. However, wireless transmission of real-time data can also be done by 

purchasing and installing a communications add-on to the sensor. 

Other notable manufactures include Vaisala, which is currently being used by NCDOT 

Asheville division to monitor visibility i.e. PWD 10. This instrument has a measurement range of 

10 m to 2000 m. PWD 10 is most preferred for monitoring visibility on roads. For higher visibility 

ranges, FS 11 by Vaisala can be used with a range of 5 m to 75,000 m. These instruments can also 

be equipped with solar panel for power supply. However, the cost of the equipment could go up to 

$25,000 per unit. 

  



56 
 

 

8. CONCLUSIONS 

 

Visibility is critical to the task of driving. Fog presents a challenge to motorists and can result in 

significant safety concerns due to reduced visibility and has resulted in terrible crashes because 

drivers are often caught unaware by sudden reductions in visibility. Various historical weather data 

sources, such as ISD, HRRR forecasts, and visibility sensors were explored to predict visibility 

conditions. Data obtained from these sources was processed considering variables such as wind 

speed, elevation, relative humidity, temperature, dewpoint, sea level pressure, station pressure, 

precipitation, cloud cover, ceiling height data, rainfall in the past three hours (Rain 3hr), three to 

six hours (Rain 6hr), six to twelve hours (Rain 12hr) and twelve to twenty-four hours (Rain 24hr), 

and presence of water bodies to predict visibility. Statistical and back-propagation neural network 

techniques were used in developing models and were validated for performance evaluation. Along 

with these models, the Thiessen polygon method and inverse distance weighted interpolation maps 

were developed to help predict visibility at route / link level. 

The results obtained indicate that weighted linear regression models were statistically 

significant in predicting visibility at a 95% confidence level. The weighted linear regression model 

developed for visibility less than 15,000 m (which considered data from all weather information) 

has better performance compared to all other regression models. In addition, visibility sensors were 

installed and weather information from nearest weather station was used to validate data sources 

and the developed models. Visibility values obtained from the models were compared with 

visibility information obtained from the visibility sensor to validate the developed models. 

The results obtained from model validation indicate that HRRR model has better 

performance in predicting the visibility. For validation of regression model, the primary challenge 

is that it requires weather information such as air temperature, dew point, precipitation, elevation, 

and cloud cover to predict the visibility at a given location. Generally, for all the locations, nearest 

weather station is located at more than 5 miles apart. Also, the procured visibility sensor has a 

limited capability which can collect only visibility information. Different add-ons for the sensor 

are required to capture information, such as temperature, dew point temperature, rainfall, cloud 

cover information. Ideally, for validation of regression model, information such as air temperature, 

dew point, precipitation, elevation, and cloud cover at the installed location of visibility sensor is 

necessary. 
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Backward propagation neural network was observed to outperform all other models 

developed in predicting visibility. The neural networks are fast and do not need any formulas or 

conditions. Their adaptive nature helps them adapt to the data variations and learn input 

characteristics yielding better results. However, unlike statistical methods, the neural network 

model is a black box model that has a predictive value solely based on observations but does not 

provide any explanation. Therefore, statistical models are more appropriate when one wants to 

understand the role of predictor variables. 

HRRR model is an important source that can be considered as it helps predict visibility 

dynamically for the next two hours. Also, it can provide visibility information for future 

timestamps at a route / link level. Out of the all models developed and available data sources, 

HRRR dataset is observed to be more useful for government agencies to provide dynamic forecasts 

of visibility information to travelers through radio / mobile application / dynamic signs. Similar to 

HRRR, satellite-based fog detection product is a novel product to forecast visibility in real-time. 

To provide with a real-time visibility information, it is recommended to perform a 

feasibility study that explores suitability of off-the-shelf low-cost visibility sensors or build a low-

cost visibility sensor which can help provide dynamic visibility information to travelers. A further 

study on identifying hot-spots of low visibility areas which could have an impact on traffic safety 

is recommended. Identifying such hot-spots will help agencies prioritize and use the limited 

resources available efficiently. Further, with advancement in modelling methods and technologies, 

several products such as HRRR and satellite-based fog data sources could be put to better use for 

predicting and informing road users with visibility information at link-level. The cost of hosting 

such a server with tools for downloading / uploading and disseminating visibility information is 

estimated around $50,000, plus annual maintenance and upgrades. 

Currently available off-the-shelf instruments are expensive and can be installed at a limited 

number of locations. There is need to explore or develop a new low cost visibility sensor that are 

solar powered and can transmit information wirelessly to enable dynamic massages for road users. 

The development of such low cost visibility sensors and their applicability at route / link level 

merit research and investigation. 
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8.1 Implementation Plan 

Based on the findings from this research, it is recommended that NCDOT use HRRR and satellite-

based fog data sources to provide with visibility information for travelers. As HRRR can provide 

with 2-hour forecasts, it can be used to provide advanced warning to travelers through dynamic 

message signs. The statistical and neural network models developed in this research can be used 

by NCDOT to forecast visibility based on long-term weather forecast (> 2 hours) data obtained 

from weather stations. It helps NCDOT to evaluate long-term forecasts of visibility. It is suggested 

that current available technologies for evaluating visibility be tested at low visibility hot-spots, 

which could have an impact on traffic safety.  

To provide with dynamic messages on low visibility conditions to road users, large 

amounts of weather data that can be obtained from HRRR and GOES (satellite-based) data sources 

has to be processed. To process such data, it is recommended to install a stand-alone sever that is 

capable of downloading / uploading and processing the weather data to identify both low visibility 

hot-spots and duration of such adverse weather conditions in the state of North Carolina. The 

processed information can be further transmitted to travelers using dynamic massage signs on 

roadways to provide them with advanced warnings related low-visibility conditions. 
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Annexure A 

Table A1 OLS Regression Model for Visibility Data <15000m 

Variable 
All Elevation < 50 m Elevation 50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-
Value Coef. P-Value Coef. P-Value Coef. P-

Value Coef. P-Value 

Elevation -0.76 <0.01 -6.79 <0.01 1.58 <0.01 -0.62 <0.01 -2.74 <0.01 
Cloud cover -32.07 <0.01 -30.46 <0.01 -31.21 <0.01 -35.15 <0.01 -40.11 <0.01 

m10wspd 231.90 <0.01 265.33 <0.01 273.84 <0.01 250.82 <0.01 120.49 <0.01 
Precipitation -183.39 <0.01 -219.76 <0.01 -159.00 <0.01 -185.38 <0.01 -74.06 <0.01 

tair_dew 268.18 <0.01 199.31 <0.01 298.13 <0.01 363.39 <0.01 277.89 <0.01 
Time 4 am 10,148.41 <0.01 10,084.07 <0.01 9,842.95 <0.01 10,214.81 <0.01 11,820.29 <0.01 
Time 8 am 9,745.73 <0.01 9,540.62 <0.01 9,518.98 <0.01 9,914.41 <0.01 11,302.41 <0.01 

Time 12 pm 9,292.91 <0.01 9,106.77 <0.01 9,008.21 <0.01 9,474.77 <0.01 10,865.77 <0.01 
Time 4 pm 9,639.20 <0.01 9,356.07 <0.01 9,461.49 <0.01 9,735.17 <0.01 11,275.40 <0.01 
Time 8 pm 9,190.01 <0.01 9,175.67 <0.01 8,819.86 <0.01 9,300.62 <0.01 10,964.43 <0.01 
Time 12 am 9,520.59 <0.01 9,582.64 <0.01 9,094.74 <0.01 9,528.11 <0.01 11,274.07 <0.01 

Rain 3 hr 711.86 <0.01 679.21 <0.01 557.05 <0.01 753.21 <0.01 1,212.77 <0.01 
Rain 6 hr 93.73 <0.01 102.47 <0.01 89.48 <0.01 69.91 0.02 - - 
Rain 12 hr -44.87 <0.01 159.78 <0.01 -118.56 <0.01 -273.55 <0.01 -185.96 <0.01 
Rain 24 hr 50.15 <0.01 166.28 <0.01 - - - - 174.51 <0.01 

Water - - 114.83 <0.01 -46.65 0.04 133.37 <0.01 - - 
No. of Observations 685,375 244,448 259,202 158,126 23,599 

R-Square 0.86 0.87 0.86 0.84 0.80 
Adj. R-Square 0.86 0.87 0.86 0.84 0.80 

AIC 13,200,000 4,674,395 4,983,872 3,038,998 451,866 
RMSE 3,567.00 3,436.30 3,622.50 3,606.30 3,479.40 
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Table A2  WLS Regression Model for Visibility Data <15000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-
Value Coef. P-Value Coef. P-Value Coef. P-

Value 
Elevation -0.78 <0.01 -7.59 <0.01 1.50 <0.01 -0.67 <0.01 -3.05 <0.01 

Cloud cover -32.38 <0.01 -30.43 <0.01 -31.66 <0.01 -35.77 <0.01 -41.65 <0.01 
m10wspd 234.85 <0.01 262.50 <0.01 274.46 <0.01 246.38 <0.01 122.74 <0.01 

Precipitation -184.56 <0.01 -228.52 <0.01 -166.44 <0.01 -192.18 <0.01 -85.40 <0.01 
tair_dew 265.58 <0.01 191.97 <0.01 296.01 <0.01 362.05 <0.01 285.38 <0.01 

Time 4 am 10,247.42 <0.01 10,211.02 <0.01 9,986.03 <0.01 10,350.68 <0.01 12,215.94 <0.01 
Time 8 am 9,833.03 <0.01 9,641.01 <0.01 9,643.31 <0.01 10,042.75 <0.01 11,631.98 <0.01 

Time 12 pm 9,367.32 <0.01 9,184.14 <0.01 9,091.50 <0.01 9,588.56 <0.01 11,157.89 <0.01 
Time 4 pm 9,700.69 <0.01 9,426.37 <0.01 9,544.33 <0.01 9,856.87 <0.01 11,624.32 <0.01 
Time 8 pm 9,199.83 <0.01 9,239.34 <0.01 8,901.71 <0.01 9,404.95 <0.01 11,274.35 <0.01 
Time 12 am 9,578.33 <0.01 9,672.88 <0.01 9,186.11 <0.01 9,629.27 <0.01 11,585.38 <0.01 

Rain 3 hr 683.66 <0.01 652.33 <0.01 545.01 <0.01 762.64 <0.01 1,288.19 <0.01 
Rain 6 hr 74.74 <0.01 99.86 <0.01 84.92 - 50.92 <0.01 - - 
Rain 12 hr -48.45 <0.01 159.26 <0.01 -157.62 <0.01 -324.04 <0.01 -201.17 <0.01 
Rain 24 hr 45.96 <0.01 166.97 <0.01 - - - - 203.30 <0.01 

Water - - 97.51 <0.01 -67.99 <0.01 115.88 <0.01 - - 
No. of Observations 685,375 244,448 259,202 158,126 23,599 

R-Square 0.99 0.99 0.98 0.98 0.95 
Adj. R-Square 0.99 0.99 0.98 0.98 0.95 

AIC 11,200,000 366,836 4,468,495 2,684,371 415,281 
RMSE 825.40 808.27 1,340.60 1,175.10 1,602.80 
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Table A3 OLS Regression Model for Visibility Data <15000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -1.09 <0.01 - - -0.92 <0.01 -1.48 <0.01 -17.37 <0.01 

Cloud cover -32.52 <0.01 -34.09 <0.01 -28.33 <0.01 -35.44 <0.01 -36.97 <0.01 
m10wspd 209.86 <0.01 282.80 <0.01 231.95 <0.01 240.39 <0.01 - - 

Precipitation -161.89 <0.01 -216.12 <0.01 -141.82 <0.01 -128.12 <0.01 -105.95 <0.01 
tair_dew 432.77 <0.01 294.88 <0.01 608.58 <0.01 513.25 <0.01 427.63 <0.01 

Time 4 am 9,851.07 <0.01 9,679.63 <0.01 9,675.72 <0.01 10,238.53 <0.01 25,359.16 <0.01 
Time 8 am 9,488.88 <0.01 9,147.41 <0.01 9,527.57 <0.01 9,910.24 <0.01 24,998.97 <0.01 

Time 12 pm 8,980.28 <0.01 8,670.09 <0.01 8,983.95 <0.01 9,327.96 <0.01 24,636.44 <0.01 
Time 4 pm 9,271.29 <0.01 9,041.36 <0.01 9,134.62 <0.01 9,632.86 <0.01 24,716.27 <0.01 
Time 8 pm 8,762.38 <0.01 8,672.40 <0.01 8,174.97 <0.01 9,454.76 <0.01 24,695.88 <0.01 
Time 12 am 9,131.83 <0.01 9,110.62 <0.01 8,605.57 <0.01 9,618.31 <0.01 24,799.25 <0.01 

Rain 3 hr 779.91 <0.01 933.00 <0.01 399.94 <0.01 914.04 <0.01 776.27 <0.01 
Rain 6 hr 69.80 <0.01 151.12 <0.01 - - - - -198.67 <0.01 
Rain 12 hr - - 271.61 <0.01 -87.21 0.02 -349.60 <0.01 - - 
Rain 24 hr 94.18 <0.01 237.95 <0.01 - - -137.93 <0.01 375.40 <0.01 

Water 259.19 <0.01 367.98 <0.01 206.83 <0.01 - - - - 
No. of Observations 183,377 71,615 59,531 42,334 9,897 

R-Square 0.85 0.87 0.86 0.84 0.82 
Adj. R-Square 0.85 0.87 0.86 0.84 0.82 

AIC 3,523,477 1,376,872 1,146,357 808,167 188,501 
RMSE 3,598.30 3,619 3,670.60 3,381 3,360.00 
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Table A4 WLS Regression Model for Visibility Data <15000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -1.10 <0.01 - - -1.18 <0.01 -1.50 <0.01 -18.23 <0.01 

Cloud cover -33.01 <0.01 -34.47 <0.01 -28.23 <0.01 -36.02 <0.01 -38.64 <0.01 
m10wspd 210.64 <0.01 279.38 <0.01 230.35 <0.01 240.47 <0.01 - - 

Precipitation -168.84 <0.01 -225.91 <0.01 -148.92 <0.01 -133.94 <0.01 -109.88 <0.01 
tair_dew 436.03 <0.01 292.43 <0.01 614.36 <0.01 524.95 <0.01 442.70 <0.01 

Time 4 am 9,945.09 <0.01 9,810.18 <0.01 9,820.39 <0.01 10,342.91 <0.01 26,260.36 <0.01 
Time 8 am 9,572.02 <0.01 9,239.20 <0.01 9,647.69 <0.01 9,986.01 <0.01 25,883.67 <0.01 

Time 12 pm 9,031.51 <0.01 8,742.02 <0.01 9,074.99 <0.01 9,378.47 <0.01 25,454.09 <0.01 
Time 4 pm 9,319.43 <0.01 9,119.31 <0.01 9,197.60 <0.01 9,705.09 <0.01 25,545.07 <0.01 
Time 8 pm 8,805.10 <0.01 8,761.18 <0.01 8,229.73 <0.01 9,519.71 <0.01 25,502.93 <0.01 
Time 12 am 9,187.82 <0.01 9,186.21 <0.01 8,692.96 <0.01 9,673.67 <0.01 25,625.09 <0.01 

Rain 3 hr 779.30 <0.01 933.70 <0.01 370.77 <0.01 902.89 <0.01 841.47 <0.01 
Rain 6 hr 55.68 <0.01 150.13 <0.01 - - - - -234.02 <0.01 
Rain 12 hr - - 259.16 <0.01 -127.64 <0.01 -373.40 <0.01 - - 
Rain 24 hr 95.76 <0.01 237.83 <0.01 - - -139.14 <0.01 413.21 <0.01 

Water 269.34 <0.01 369.33 <0.01 205.99 <0.01 - - - - 
No. of Observations 18,377 71,615 59,531 42,334 9,897 

R-Square 0.98 0.98 0.98 0.97 0.96 
Adj. R-Square 0.98 0.98 0.98 0.97 0.96 

AIC 3,141,427 1,237,751 1,032,004 735,429 172,251 
RMSE 1,269.70 1,370.10 1,406.30 1,430.10 1,454.70 
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Table A5 OLS Regression Model for Visibility Data <10000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -0.39 <0.01 -  1.89 <0.01 -0.05 <0.01 -0.83 <0.01 

Cloud cover -27.90 <0.01 -28.20 <0.01 -26.92 <0.01 -28.91 <0.01 -33.01 <0.01 
m10wspd 171.60 <0.01 181.64 <0.01 205.36 <0.01 192.98 <0.01 132.37 <0.01 

Precipitation -72.42 <0.01 -99.64 <0.01 -63.34 <0.01 -57.13 <0.01 - - 
tair_dew 126.20 <0.01 107.67 <0.01 147.31 <0.01 137.40 <0.01 117.39 <0.01 

Time 4 am 7,060.14 <0.01 6,840.46 <0.01 6,707.08 <0.01 7,170.20 <0.01 7,597.80 <0.01 
Time 8 am 6,839.58 <0.01 6,560.42 <0.01 6,551.50 <0.01 6,942.90 <0.01 7,376.72 <0.01 

Time 12 pm 6,693.67 <0.01 6,488.45 <0.01 6,363.08 <0.01 6,759.93 <0.01 7,093.93 <0.01 
Time 4 pm 7,027.37 <0.01 6,890.60 <0.01 6,717.75 <0.01 6,976.27 <0.01 7,335.88 <0.01 
Time 8 pm 6,878.63 <0.01 6,790.81 <0.01 6,444.54 <0.01 6,945.61 <0.01 7,193.21 <0.01 
Time 12 am 6,979.21 <0.01 6,930.48 <0.01 6,504.79 <0.01 7,039.19 <0.01 7,388.89 <0.01 

Rain 3 hr 916.54 <0.01 1,002.32 <0.01 801.65 <0.01 845.83 <0.01 1,130.51 <0.01 
Rain 6 hr 158.21 <0.01 184.84 <0.01 155.20 <0.01 126.25 <0.01 - - 
Rain 12 hr 50.85 <0.01 199.27 <0.01 46.63 0.02 -148.63 <0.01 -102.69 0.03 
Rain 24 hr - - 169.87 <0.01 -41.18 0.02 -119.56 <0.01 - - 

Water -222.53 <0.01 -219.11 <0.01 -224.95 <0.01 - - - - 
No. of Observations 361,182 117,233 137,447 90,637 15,865 

R-Square 0.83 0.84 0.83 0.81 0.79 
Adj. R-Square 0.83 0.84 0.83 0.81 0.79 

AIC 6,701,768 2,173,896 2,550,679 1,681,680 292,863 
RMSE 2,587.90 2,572.60 2,590.90 2,586.30 2,466.40 
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Table A6 WLS Regression Model for Visibility Data <10000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -0.44 <0.01 - - 2.01 <0.01 -0.06 0.03 -0.79 <0.01 

Cloud cover -28.39 <0.01 -28.87 <0.01 -27.63 <0.01 -29.73 <0.01 -34.03 <0.01 
m10wspd 178.65 <0.01 189.37 <0.01 211.70 <0.01 199.64 <0.01 138.62 <0.01 

Precipitation -74.99 <0.01 -102.16 <0.01 -64.49 <0.01 -58.03 <0.01 - - 
tair_dew 127.14 <0.01 102.90 <0.01 145.39 <0.01 134.62 <0.01 116.94 <0.01 

Time 4 am 7,109.28 <0.01 6,911.71 <0.01 6,759.31 <0.01 7,240.62 <0.01 7,627.63 <0.01 
Time 8 am 6,897.88 <0.01 6,596.70 <0.01 6,613.05 <0.01 7,019.88 <0.01 7,960.07 <0.01 

Time 12 pm 6,722.66 <0.01 6,519.74 <0.01 6,390.47 <0.01 6,816.74 <0.01 7,080.83 <0.01 
Time 4 pm 7,071.53 <0.01 6,940.13 <0.01 6,768.97 <0.01 7,043.13 <0.01 7,340.95 <0.01 
Time 8 pm 6,901.08 <0.01 6,827.12 <0.01 6,468.13 <0.01 7,003.21 <0.01 7,193.06 <0.01 
Time 12 am 7,011.97 <0.01 6,964.96 <0.01 6,549.90 <0.01 7,098.79 <0.01 7,405.52 <0.01 

Rain 3 hr 926.88 <0.01 1,021.40 <0.01 812.61 <0.01 849.06 <0.01 1,176.74 <0.01 
Rain 6 hr 143.17 <0.01 190.18 <0.01 141.72 <0.01 123.49 <0.01 - - 
Rain 12 hr 55.87 <0.01 208.90 <0.01 41.51 <0.01 -178.46 <0.01 -95.62 <0.01 
Rain 24 hr - - 177.17 <0.01 -50.67 <0.01 -110.93 <0.01 - - 

Water -234.49 <0.01 -219.00 <0.01 -241.94 <0.01 - - - - 
No. of Observations 361,182 117,233 137,447 90,637 15,865 

R-Square 0.98 0.98 0.97 0.97 0.96 
Adj. R-Square 0.98 0.98 0.97 0.97 0.96 

AIC 5,254,038 1,846,543 2,292,924 1,485,337 264,234 
RMSE 348.78 636.84 1,014.50 875.56 1,000.50 

 
 
 



71 
 

 

Table A7 OLS Regression Model for Visibility Data <10000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -0.49 <0.01 - - 1.03 <0.01 -0.64 <0.01 -13.87 <0.01 

Cloud cover -28.15 <0.01 -28.82 <0.01 -25.06 <0.01 -31.11 <0.01 -30.48 <0.01 
m10wspd 175.74 <0.01 219.64 <0.01 195.00 <0.01 167.83 <0.01 54.24 <0.01 

Precipitation -60.44 <0.01 -101.71 <0.01 -41.13 <0.01 -42.16 <0.01 -40.13 0.04 
tair_dew 208.83 <0.01 134.75 <0.01 382.33 <0.01 263.27 <0.01 275.58 <0.01 

Time 4 am 6,865.89 <0.01 6,686.13 <0.01 6,295.22 <0.01 7,390.74 <0.01 19,683.49 <0.01 
Time 8 am 6,722.82 <0.01 6,412.11 <0.01 6,335.12 <0.01 7,241.17 <0.01 19,524.11 <0.01 

Time 12 pm 6,520.76 <0.01 6,294.97 <0.01 6,190.45 <0.01 6,829.43 <0.01 19,326.89 <0.01 
Time 4 pm 6,798.39 <0.01 6,634.50 <0.01 6,400.06 <0.01 7,118.41 <0.01 19,224.01 <0.01 
Time 8 pm 6,581.29 <0.01 6,411.67 <0.01 5,806.57 <0.01 7,273.34 <0.01 19,272.53 <0.01 
Time 12 am 6,723.76 <0.01 6,705.21 <0.01 5,838.03 <0.01 7,355.68 <0.01 19,386.16 <0.01 

Rain 3 hr 986.64 <0.01 1,130.13 <0.01 657.96 <0.01 1,097.47 <0.01 835.14 <0.01 
Rain 6 hr 156.28 <0.01 227.71 <0.01 155.47 <0.01 127.88 <0.01 - - 
Rain 12 hr 61.84 <0.01 262.39 <0.01 - - -202.26 <0.01 - - 
Rain 24 hr 57.88 <0.01 223.63 <0.01 66.11 0.05 -181.92 <0.01 216.16 <0.01 

Water -181.77 <0.01 -140.86 <0.01 -139.24 <0.01 - - - - 
No. of Observations 101,847 36,708 32,531 25,839 6,769 

R-Square 0.82 0.83 0.82 0.82 0.81 
Adj. R-Square 0.82 0.83 0.82 0.82 0.81 

AIC 1,890,508 682,266 605,237 476,734 124,376.80 
RMSE 2,597.00 2,628 2,652.60 2,455 2,362.20 
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Table A8 WLS Regression Model for Visibility Data <10000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation -0.50 <0.01 - - 1.02 <0.01 -0.68 <0.01 -14.04 <0.01 

Cloud cover -28.86 <0.01 -29.78 <0.01 -25.61 <0.01 -31.91 <0.01 -30.72 <0.01 
m10wspd 183.96 <0.01 230.16 <0.01 204.84 <0.01 165.42 <0.01 54.35 <0.01 

Precipitation -62.40 <0.01 -101.15 <0.01 -45.97 <0.01 -42.21 <0.01 -49.54 <0.01 
tair_dew 221.09 <0.01 133.92 <0.01 403.70 <0.01 298.94 <0.01 275.05 <0.01 

Time 4 am 6,898.32 <0.01 6,694.60 <0.01 6,300.22 <0.01 7,469.19 <0.01 19,850.55 <0.01 
Time 8 am 6,763.11 <0.01 6,437.51 <0.01 6,365.48 <0.01 7,313.28 <0.01 19,694.79 <0.01 

Time 12 pm 6,542.06 <0.01 6,319.06 <0.01 6,201.69 <0.01 6,841.30 <0.01 19,504.57 <0.01 
Time 4 pm 6,824.36 <0.01 6,672.49 <0.01 6,422.91 <0.01 7,167.27 <0.01 19,373.14 <0.01 
Time 8 pm 6,590.24 <0.01 6,441.66 <0.01 5,804.14 <0.01 7,325.95 <0.01 19,422.28 <0.01 
Time 12 am 6,741.61 <0.01 6,734.72 <0.01 5,836.11 <0.01 7,423.99 <0.01 19,552.91 <0.01 

Rain 3 hr 1,000.87 <0.01 1,149.07 <0.01 688.43 <0.01 1,108.02 <0.01 859.68 <0.01 
Rain 6 hr 158.00 <0.01 209.72 <0.01 129.67 <0.01 138.20 <0.01 - - 
Rain 12 hr 63.19 <0.01 271.57 <0.01 - - -211.21 <0.01 - - 
Rain 24 hr 66.97 <0.01 218.13 <0.01 58.35 <0.01 -200.60 <0.01 219.05 <0.01 

Water -195.69 <0.01 -118.89 <0.01 -144.38 <0.01 - - - - 
No. of Observations 101,847 36,708 32,531 25,839 6,769 

R-Square 0.97 0.99 0.98 0.97 0.99 
Adj. R-Square 0.97 0.99 0.98 0.97 0.99 

AIC 1,688,427 595,369 531,956 426,776 105,086 
RMSE 962.97 804.63 860.03 933.68 568.16 
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Table A9 OLS Regression Model for Visibility Data <5000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation 0.06 <0.01 5.90 <0.01 1.54 <0.01 - - - - 

Cloud cover -17.87 <0.01 -17.12 <0.01 -17.33 <0.01 -19.63 <0.01 -24.52 <0.01 
m10wspd 109.61 <0.01 101.52 <0.01 137.48 <0.01 130.29 <0.01 114.44 <0.01 

Precipitation -6.62 <0.01 -19.51 <0.01 - - - - - - 
tair_dew -14.59 <0.01 -12.94 <0.01 -8.24 0.04 -20.46 <0.01 54.87 <0.01 

Time 4 am 3,956.05 <0.01 3,541.96 <0.01 3,744.69 <0.01 4,332.98 <0.01 4,355.17 <0.01 
Time 8 am 3,795.35 <0.01 3,406.09 <0.01 3,585.98 <0.01 4,161.01 <0.01 4,224.34 <0.01 

Time 12 pm 3,730.89 <0.01 3,438.09 <0.01 3,499.48 <0.01 3,990.90 <0.01 4,140.02 <0.01 
Time 4 pm 4,038.83 <0.01 3,812.21 <0.01 3,797.77 <0.01 4,257.24 <0.01 4,293.55 <0.01 
Time 8 pm 4,224.96 <0.01 3,916.37 <0.01 3,986.86 <0.01 4,515.61 <0.01 4,382.63 <0.01 
Time 12 am 4,179.28 <0.01 3,928.52 <0.01 3,894.24 <0.01 4,462.16 <0.01 4,457.43 <0.01 

Rain 3 hr 696.22 <0.01 754.85 <0.01 612.67 <0.01 658.82 <0.01 879.57 <0.01 
Rain 6 hr 198.93 <0.01 193.97 <0.01 211.37 <0.01 202.77 <0.01 - - 
Rain 12 hr 62.29 <0.01 196.46 <0.01 53.15 <0.01 -69.18 <0.01 - - 
Rain 24 hr -45.67 <0.01 94.78 <0.01 -61.42 <0.01 -179.96 <0.01 - - 

Water -231.30 <0.01 -308.40 <0.01 -127.30 <0.01 -113.81 <0.01 - - 
No. of Observations 163,213 48,951 60,442 44,703 9,117 

R-Square 0.79 0.79 0.81 0.80 0.77 
Adj. R-Square 0.79 0.79 0.81 0.80 0.77 

AIC 2,845,300 852,055 1,053,069 778,812 159,183 
RMSE 1,476.70 1,456.90 1,469.00 1,468.30 1,496.00 
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Table A10 WLS Regression Model for Visibility Data <5000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation 0.09 <0.01 6.32 <0.01 1.64 <0.01 - - - - 

Cloud cover -18.76 <0.01 -18.45 <0.01 -18.51 <0.01 -20.39 <0.01 -25.13 <0.01 
m10wspd 112.19 <0.01 105.74 <0.01 143.10 <0.01 137.30 <0.01 118.44 <0.01 

Precipitation -7.87 <0.01 -22.74 <0.01 - - - - - - 
tair_dew -14.87 <0.01 -15.98 <0.01 -11.51 <0.01 -19.27 <0.01 52.86 <0.01 

Time 4 am 4,006.41 <0.01 3,626.47 <0.01 3,809.63 <0.01 4,381.15 <0.01 4,400.86 <0.01 
Time 8 am 3,866.88 <0.01 3,465.54 <0.01 3,644.32 <0.01 4,202.68 <0.01 4,259.34 <0.01 

Time 12 pm 3,781.91 <0.01 3,504.71 <0.01 3,554.47 <0.01 4,041.32 <0.01 4,127.13 <0.01 
Time 4 pm 4,085.93 <0.01 3,894.71 <0.01 3,883.76 <0.01 4,308.11 <0.01 4,332.60 <0.01 
Time 8 pm 4,295.41 <0.01 4,011.86 <0.01 4,067.09 <0.01 4,578.40 <0.01 4,392.95 <0.01 
Time 12 am 4,247.53 <0.01 4,022.37 <0.01 3,977.91 <0.01 4,523.72 <0.01 4,496.25 <0.01 

Rain 3 hr 735.63 <0.01 814.40 <0.01 647.13 <0.01 697.50 <0.01 928.77 <0.01 
Rain 6 hr 206.85 <0.01 200.41 <0.01 217.62 <0.01 204.66 <0.01 - - 
Rain 12 hr 55.34 <0.01 202.04 <0.01 56.21 <0.01 -71.68 <0.01 - - 
Rain 24 hr -47.05 <0.01 103.02 <0.01 -68.91 <0.01 -197.12 <0.01 - - 

Water -249.03 <0.01 -344.62 <0.01 -135.75 <0.01 -134.60 <0.01 - - 
No. of Observations 163,213 48,951 60,442 44,703 9,117 

R-Square 0.97 0.95 0.96 0.96 0.96 
Adj. R-Square 0.97 0.95 0.96 0.96 0.96 

AIC 2,515,898 772,895 936,818 696,850 140,030 
RMSE 538.30 649.02 562 587.06 523.29 
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Table A11 OLS Regression Model for Visibility Data <5000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation - - -1.54 0.04 3.50 <0.01 -0.35 <0.01 -11.92 <0.01 

Cloud cover -18.14 <0.01 -16.55 <0.01 -16.33 <0.01 -24.37 <0.01 -20.57 <0.01 
m10wspd 118.75 <0.01 107.30 <0.01 163.22 <0.01 114.42 <0.01 68.10 <0.01 

Precipitation - - -10.72 0.02 - - - - - - 
tair_dew 15.25 <0.01 17.06 0.03 37.19 <0.01 - - 134.33 <0.01 

Time 4 am 3,884.68 <0.01 3,683.15 <0.01 3,013.27 <0.01 4,836.86 <0.01 15,265.24 <0.01 
Time 8 am 3,757.55 <0.01 3,480.71 <0.01 2,989.43 <0.01 4,638.25 <0.01 15,298.57 <0.01 

Time 12 pm 3,690.34 <0.01 3,535.34 <0.01 2,986.91 <0.01 4,352.19 <0.01 15,226.36 <0.01 
Time 4 pm 3,980.76 <0.01 3,917.06 <0.01 3,255.69 <0.01 4,602.52 <0.01 15,280.81 <0.01 
Time 8 pm 4,141.13 <0.01 4,031.86 <0.01 3,237.23 <0.01 5,031.24 <0.01 15,370.37 <0.01 
Time 12 am 4,075.38 <0.01 4,090.94 <0.01 3,061.52 <0.01 5,001.94 <0.01 15,258.44 <0.01 

Rain 3 hr 718.88 <0.01 703.84 <0.01 493.85 <0.01 933.22 <0.01 724.73 <0.01 
Rain 6 hr 204.57 <0.01 249.44 <0.01 198.09 <0.01 177.10 <0.01 - - 
Rain 12 hr 90.56 <0.01 217.31 <0.01 124.58 <0.01 -92.42 <0.01 - - 
Rain 24 hr - - 66.62 0.02 - - -106.91 <0.01 - - 

Water -382.00 <0.01 -369.09 <0.01 -177.14 <0.01 - - - - 
No. of Observations 47,849 16,028 14,963 12,964 3,894 

R-Square 0.79 0.79 0.80 0.80 0.79 
Adj. R-Square 0.79 0.79 0.80 0.80 0.79 

AIC 834,011 279,060 260,837 225,244 67,610 
RMSE 1,474.30 1,460 1,475.40 1,434 1,423.60 
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Table A12 WLS Regression Model for Visibility Data <5000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 

750 m Elevation > 750 m 

Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value Coef. P-Value 
Elevation - - -1.64 <0.01 3.73 <0.01 -0.44 <0.01 -12.61 <0.01 

Cloud cover -19.36 <0.01 -17.82 <0.01 -17.37 <0.01 -25.36 <0.01 -21.62 <0.01 
m10wspd 123.84 <0.01 116.01 <0.01 169.63 <0.01 116.03 <0.01 70.90 <0.01 

Precipitation - - -11.47 <0.01 - - - - - - 
tair_dew 14.96 <0.01 14.01 <0.01 42.79 <0.01 - - 127.71 <0.01 

Time 4 am 3,954.84 <0.01 3,762.29 <0.01 3,042.41 <0.01 4,925.00 <0.01 15,975.83 <0.01 
Time 8 am 3,827.46 <0.01 3,526.27 <0.01 3,031.71 <0.01 4,732.54 <0.01 16,006.92 <0.01 

Time 12 pm 3,755.81 <0.01 3,595.82 <0.01 3,006.90 <0.01 4,410.19 <0.01 15,944.89 <0.01 
Time 4 pm 4,069.04 <0.01 4,009.87 <0.01 3,299.47 <0.01 4,687.41 <0.01 15,982.99 <0.01 
Time 8 pm 4,227.37 <0.01 4,124.37 <0.01 3,278.01 <0.01 5,137.49 <0.01 16,081.01 <0.01 
Time 12 am 4,167.70 <0.01 4,160.07 <0.01 3,103.45 <0.01 5,111.04 <0.01 15,972.71 <0.01 

Rain 3 hr 764.13 <0.01 756.75 <0.01 525.06 <0.01 1,003.59 <0.01 742.26 <0.01 
Rain 6 hr 198.27 <0.01 258.78 <0.01 198.58 <0.01 171.13 <0.01 - - 
Rain 12 hr 109.46 <0.01 221.70 <0.01 113.89 <0.01 -89.43 <0.01 - - 
Rain 24 hr - - 64.56 <0.01 - - -115.57 <0.01 - - 

Water -413.85 <0.01 -392.74 <0.01 -201.22 <0.01 - - - - 
No. of Observations 47,849 16,028 14,963 12,964 3,894 

R-Square 0.96 0.98 0.97 0.98 0.95 
Adj. R-Square 0.96 0.98 0.97 0.98 0.95 

AIC 748,164 243,483 228,051 195,046 61,166 
RMSE 601.18 481.12 493.29 447.26 622 
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Table A13 OLS Regression Model for Visibility Data <2000m 

Variable 
All Elevation < 50 m Elevation  50 m to 250 

m 
Elevation 250 m to 750 

m Elevation > 750 m 

Coef. P-
Value Coef. P-

Value Coef. P-Value Coef. P-Value Coef. P-
Value 

Elevation -0.13 <0.01 -0.58 <0.01 0.49 <0.01 -0.19 <0.01 0.85 <0.01 
Cloud cover -2.78 <0.01 -2.66 <0.01 -2.88 <0.01 -3.39 <0.01 -34.66 <0.01 

m10wspd 33.65 <0.01 30.14 <0.01 40.18 <0.01 30.80 <0.01 56.38 <0.01 
Precipitation 6.44 <0.01 3.38 <0.01 5.78 <0.01 13.54 <0.01 36.39 <0.01 

tair_dew - - -4.90 <0.01 - - - - 66.70 <0.01 
Time 4 am 1,133.31 <0.01 1,106.04 <0.01 1,057.32 <0.01 1,268.88 <0.01 3,270.99 <0.01 
Time 8 am 1,090.59 <0.01 1,065.39 <0.01 1,023.24 <0.01 1,208.81 <0.01 3,317.70 <0.01 

Time 12 pm 1,001.42 <0.01 992.13 <0.01 924.23 <0.01 1,112.77 <0.01 3,220.28 <0.01 
Time 4 pm 988.33 <0.01 961.19 <0.01 898.89 <0.01 1,117.53 <0.01 3,196.27 <0.01 
Time 8 pm 1,153.26 <0.01 1,132.55 <0.01 1,069.03 <0.01 1,308.94 <0.01 3,252.65 <0.01 
Time 12 am 1,146.76 <0.01 1,153.92 <0.01 1,025.41 <0.01 1,312.28 <0.01 3,234.74 <0.01 

Rain 3 hr 137.14 <0.01 102.13 <0.01 110.72 <0.01 156.78 <0.01 219.15 <0.01 
Rain 6 hr 58.60 <0.01 75.76 <0.01 45.23 <0.01 75.17 <0.01 - - 
Rain 12 hr 18.94 <0.01 30.46 <0.01 21.71 0.01 - - - - 
Rain 24 hr - - 42.75 <0.01 - - -52.69 <0.01 -57.10 <0.01 

Water -41.79 <0.01 -47.31 <0.01 - - -66.86 <0.01 - - 
No. of 

Observations 54,232 17,125 19,144 14,590 3,373 

R-Square 0.76 0.78 0.77 0.76 0.66 
Adj. R-Square 0.76 0.78 0.77 0.76 0.66 

AIC 821,396 258,336 289,282 221,156 51,702 
RMSE 470.56 456.35 462.27 473.24 514.49 
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Table 14 WLS Regression Model for Visibility Data <5000m 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m 
Elevation 250 m to 750 

m Elevation > 750 m 

Coef. P-
Value Coef. P-

Value Coef. P-
Value Coef. P-Value Coef. P-

Value 
Elevation -0.14 <0.01 -0.63 <0.01 0.44 <0.01 -0.19 <0.01 0.93 <0.01 

Cloud cover -2.92 <0.01 -2.72 <0.01 -3.09 <0.01 -3.70 <0.01 -36.16 <0.01 
m10wspd 35.10 <0.01 29.98 <0.01 41.39 <0.01 32.24 <0.01 61.23 <0.01 

Precipitation 6.89 <0.01 4.29 <0.01 6.98 <0.01 14.34 <0.01 40.65 <0.01 
tair_dew - - -3.75 <0.01 - - - - 65.18 <0.01 

Time 4 am 1,145.82 <0.01 1,103.98 <0.01 1,078.67 <0.01 1,296.25 <0.01 3,307.29 <0.01 
Time 8 am 1,103.25 <0.01 1,069.16 <0.01 1,041.65 <0.01 1,239.83 <0.01 3,362.56 <0.01 

Time 12 pm 1,010.26 <0.01 995.74 <0.01 947.86 <0.01 1,134.96 <0.01 3,274.85 <0.01 
Time 4 pm 992.61 <0.01 961.29 <0.01 912.90 <0.01 1,143.75 <0.01 3,239.56 <0.01 
Time 8 pm 1,174.59 <0.01 1,137.23 <0.01 1,099.22 <0.01 1,359.14 <0.01 3,304.63 <0.01 
Time 12 am 1,157.48 <0.01 1,160.04 <0.01 1,050.00 <0.01 1,346.66 <0.01 3,275.99 <0.01 

Rain 3 hr 135.92 <0.01 102.04 <0.01 111.51 <0.01 159.57 <0.01 250.79 <0.01 
Rain 6 hr 57.59 <0.01 77.53 <0.01 44.61 <0.01 74.71 <0.01 - - 
Rain 12 hr 17.93 <0.01 29.65 <0.01 19.22 <0.01 - - - - 
Rain 24 hr - - 42.13 <0.01 - - -55.72 <0.01 -49.05 <0.01 

Water -45.20 <0.01 -47.48 <0.01 - - -76.24 <0.01 - - 
No. of 

Observations 54,232 17,125 19,144 14,590 3,373 

R-Square 0.98 0.97 0.96 0.96 0.93 
Adj. R-Square 0.98 0.97 0.96 0.96 0.93 

AIC 665,843 222,987 249,388 192,932 45,662 
RMSE 112.14 162.58 163 179.89 210.16 
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Table A15 OLS Regression Model for Visibility Data <2000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m 

to 250 m 
Elevation 250 m 

to 750 m Elevation > 750 m 

Coef. P-
Value Coef. P-

Value Coef. P-Value Coef. P-
Value Coef. P-

Value 
Elevation -0.03 0.02 -0.96 <0.01 1.54 <0.01 - - -3.75 <0.01 

Cloud cover -2.21 <0.01 -2.28 <0.01 -2.07 <0.01 -6.09 <0.01 -33.41 <0.01 
m10wspd 32.93 <0.01 26.21 <0.01 33.98 <0.01 32.18 <0.01 44.38 <0.01 

Precipitation 10.19 <0.01 8.00 <0.01 - - 20.28 <0.01 28.00 <0.01 
tair_dew - - 21.94 <0.01 -27.37 <0.01 - - 85.90 <0.01 

Time 4 am 1,032.90 <0.01 1,040.41 <0.01 791.83 <0.01 1,425.15 <0.01 7,462.57 <0.01 
Time 8 am 1,003.15 <0.01 1,013.48 <0.01 741.41 <0.01 1,372.85 <0.01 7,572.18 <0.01 

Time 12 pm 902.55 <0.01 935.58 <0.01 657.76 <0.01 1,235.84 <0.01 7,495.51 <0.01 
Time 4 pm 863.87 <0.01 861.75 <0.01 653.28 <0.01 1,198.26 <0.01 7,461.19 <0.01 
Time 8 pm 1,013.51 <0.01 1,025.61 <0.01 757.16 <0.01 1,442.44 <0.01 7,525.68 <0.01 
Time 12 am 1,016.46 <0.01 1,132.93 <0.01 731.93 <0.01 1,474.37 <0.01 7,377.35 <0.01 

Rain 3 hr 145.06 <0.01 102.49 <0.01 131.49 <0.01 169.85 <0.01 272.25 <0.01 
Rain 6 hr 51.69 <0.01 86.38 <0.01 - - 76.97 <0.01 - - 
Rain 12 hr 22.05 <0.01 - - - - - - - - 
Rain 24 hr - - 39.43 <0.01 - - - - - - 

Water - - - - 47.03 <0.01 - - - - 
No. of 

Observations 16,508 5,818 4,760 4,619 1,311 

R-Square 0.74 0.77 0.75 0.72 0.71 
Adj. R-Square 0.74 0.77 0.75 0.72 0.71 

AIC 250,903 87,763 72,320 70,124 20,185 
RMSE 483.04 456 481.30 479 531.13 
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Table A16 WLS Regression Model for Visibility Data <2000m (Near to Roads) 

Variable 
All Elevation < 50 m Elevation  50 m to 

250 m Elevation 250 m to 750 m Elevation > 750 m 

Coef. P-
Value Coef. P-

Value Coef. P-
Value Coef. P-Value Coef. P-

Value 
Elevation -0.03 <0.01 -1.05 <0.01 1.71 <0.01 - - -4.55 <0.01 

Cloud cover -2.14 <0.01 -2.10 <0.01 -2.36 <0.01 -7.24 <0.01 -35.37 <0.01 
m10wspd 34.57 <0.01 25.65 <0.01 37.12 <0.01 36.62 <0.01 43.43 <0.01 

Precipitation 11.09 <0.01 9.62 <0.01 - - 20.80 <0.01 24.94 <0.01 
tair_dew - - 22.87 <0.01 -22.06 <0.01 - - 96.73 <0.01 

Time 4 am 1,022.58 <0.01 1,021.27 <0.01 780.40 <0.01 1,523.79 <0.01 8,377.35 <0.01 
Time 8 am 994.35 <0.01 993.84 <0.01 715.10 <0.01 1,480.63 <0.01 8,494.15 <0.01 

Time 12 pm 887.23 <0.01 916.62 <0.01 635.89 <0.01 1,325.42 <0.01 8,422.79 <0.01 
Time 4 pm 838.68 <0.01 832.01 <0.01 631.07 <0.01 1,274.96 <0.01 8,388.28 <0.01 
Time 8 pm 1,012.60 <0.01 1,010.51 <0.01 728.70 <0.01 1,531.63 <0.01 8,440.80 <0.01 
Time 12 am 1,004.58 <0.01 1,112.75 <0.01 703.43 <0.01 1,581.43 <0.01 8,319.78 <0.01 

Rain 3 hr 144.49 <0.01 100.23 <0.01 143.49 <0.01 192.33 <0.01 330.23 <0.01 
Rain 6 hr 47.20 <0.01 87.54 <0.01 - - 74.69 <0.01 - - 
Rain 12 hr 22.84 <0.01 - - - - - - - - 
Rain 24 hr - - 39.54 <0.01 - - - - - - 

Water - - - - 45.50 <0.01 - - - - 
No. of 

Observations 16,508 5,818 4,760 4,619 1,311 

R-Square 0.97 0.97 0.95 0.92 0.94 
Adj. R-Square 0.97 0.97 0.95 0.92 0.93 

AIC 213,342 74,906 63,663 63,806 18,187 
RMSE 154.85 151.00 193.86 241.49 248 

 
 


	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Fog Prediction Models
	2.2 Effect of Fog on Traffic Operations and Safety

	3. WEATHER DATA SOURCES
	3.1 Sources and Quality Control of Meteorological Data
	3.2 Integrated Surface Database (ISD)
	3.3 North American Regional Reanalysis (NARR)
	3.4 High-Resolution Rapid Refresh (HRRR)
	3.4 Satellite Data

	4. METHODOLOGY
	4.1 Selection of Data Source for Modeling Visibility
	4.2 Data Processing
	4.3 Develop Models
	4.4 Compare and Validate Data

	5. VISIBILITY PREDICTION MODELS
	5.1 Linear Regression Models
	5.2 Back Propagation Neural Network Models
	5.3 Visibility at Link level
	5.3.1 Fog Detection and Fog Depth Algorithm
	5.3.2 Real-Time North Carolina Satellite Products
	5.3.3 Visibility Maps using Thiessen Polygons
	5.3.4 Interpolated Visibility Maps


	6. VALIDATION
	6.1 Comparison of Visibility from Visibility Sensor with Nearby Weather Stations
	6.2 Comparison of Visibility Values with All Data Sources
	6.3 Validation of Back Propagation Neural Network Models

	7. TECHNOLOGIES AND LIMITATIONS
	8. CONCLUSIONS
	8.1 Implementation Plan

	References
	Annexure A


