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ABSTRACT

Proper partitioning of the surface energy fluxes that drive the evolution of the planetary boundary layer in

numerical weather prediction models requires an accurate representation of initial land surface conditions.

Unfortunately, soil temperature and moisture observations are unavailable in most areas and routine daily

estimates of vegetation coverage and biomass are not easily available. This gap in observational capabilities

seriously hampers the evaluation and improvement of land surface parameterizations, since model errors

likely relate to improper initial conditions as much as to inaccuracies in the parameterizations. Two unique

datasets help to overcome these difficulties. First, 1-km fractional vegetation coverage and leaf area index

values can be derived from biweekly maximum normalized difference vegetation index composites obtained

from daily observations by the Advanced Very High Resolution Radiometer onboard NOAA satellites.

Second, the Oklahoma Mesonet supplies multiple soil temperature and moisture measurements at various

soil depths each hour. Combined, these two datasets provide significantly improved initial conditions for

a land surface model and allow an evaluation of the accuracy of the land surface model with much greater

confidence than previously. Forecasts that both include and neglect these unique land surface observations

are used to evaluate the value of these two data sources to land surface initializations. The dense network of

surface observations afforded by the Oklahoma Mesonet, including surface flux data derived from special

sensors, provides verification of the model results, which indicate that predicted latent heat fluxes still differ

from observations by as much as 150 W m22. This result provides a springboard for assessing parameterization

errors within the model. A new empirical parameterization developed using principal-component regression

reveals simple relationships between latent heat flux and other surface observations. Periods of very dry

conditions observed across Oklahoma are used advantageously to derive a parameterization for evaporation

from bare soil. Combining this parameterization with an empirical canopy transpiration scheme yields im-

proved sensible and latent heat flux forecasts and better partitioning of the surface energy budget. Surface

temperature and mixing ratio forecasts show improvement when compared with observations.

1. Introduction

Proper partitioning of the surface energy fluxes that

drive the evolution of the planetary boundary layer

(PBL) requires an accurate representation of land sur-

face conditions in numerical weather prediction (NWP)

models. Several key components of the land surface that

significantly affect surface heat and moisture fluxes in-

clude soil temperature and moisture, fractional vegeta-

tion coverage (sf), and green leaf area index (LAI). The

lack of observational data for the accurate specification

of these components in model initial conditions is ar-

guably the most difficult aspect in the evaluation of land

surface models. Soil temperature and moisture measure-

ments are unavailable in most areas and routine daily

remote sensing observations of sf and LAI are not eas-

ily available at high spatial resolution. This gap in our
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observational capabilities seriously hampers the evalua-

tion and improvement of land surface model (LSM) pa-

rameterizations, since improper initial conditions and

inaccuracies in the model formulations very likely pro-

duce comparable model errors. Taking advantage of a

unique set of soil and vegetation observations to specify

an improved characterization of the initial land surface

conditions, it becomes possible to understand the short-

comings in the National Centers for Environmental

Prediction (NCEP)–Oregon State University–Air Force–

Hydrologic Research Laboratory (Noah) LSM (Chen

et al. 1996; Koren et al. 1999) by evaluating individual

model components.

Land surface parameterizations direct the exchange of

energy between the land surface and the atmosphere.

Many different land surface parameterizations are avail-

able (e.g., Bhumralkar 1975; Blackadar 1976; Deardorff

1978; McCumber and Pielke 1981; Pan and Mahrt 1987;

Noilhan and Planton 1989; Chen and Dudhia 2001), but

all serve to characterize the state of the land surface and

forecast the evolution of the lowest layer of the model

atmosphere. The surface energy balance relies strongly

upon the soil and near-surface conditions and plays

a critical role in determining the prognostic variables in

land surface models. Surface energy fluxes depend heavily

upon soil temperature and moisture conditions, as well as

vegetation coverage, atmospheric conditions, and the

physical properties of the soil. Soil moisture is a particu-

larly important component describing the land surface

and provides a key link between the atmosphere and the

water and energy balances at the surface of the earth (Wei

1995; Robock et al. 2000; Leese et al. 2001; Koster et al.

2004). Root-zone soil moisture impacts PBL processes

and the development of deep convection by moderating

sensible and latent heat fluxes and influencing boundary

layer moisture (Clark and Arritt 1995; Basara and

Crawford 2002). Soil temperature modulates the distri-

bution of heat near the soil surface (Dudhia 1996) and

affects the surface radiation budget through its influence

on the ground heat flux (Brotzge and Crawford 2003).

Unfortunately, NCEP operational Eta Model analyses

(Black 1994), which provide initial conditions to a variety

of operational and research models, exhibit strong biases

in soil temperature and soil moisture (Marshall et al. 2003;

Godfrey and Stensrud 2008). This finding necessitates the

inclusion of soil temperature and soil moisture observa-

tions in model initializations in order to address in-

accuracies in LSM parameterizations.

Studies of the effect of vegetation density and cover-

age indicate the necessity for including vegetation pa-

rameterizations within NWP models (e.g., Pielke et al.

1991; McPherson et al. 2004). The characterization of

vegetation in the Noah LSM requires two variables. The

model grid cell fraction where a photosynthetically ac-

tive green canopy intercepts downward solar radiation

at midday defines sf (Chen et al. 1996). The ratio of

total green leaf area to its covered ground area (Curran

1983; Yin and Williams 1997) defines the LAI, which is a

measure of the vegetation biomass. Together, vegeta-

tion density and coverage provide critical information

on the partitioning of total evaporation between bare

soil and canopy transpiration (Chen and Dudhia 2001).

An assessment of the spatial variability of observed latent

heat fluxes reveals a strong relationship between evapo-

ration and the distribution of soil moisture and vegetation

(Chen and Brutsaert 1995). Lower albedo and decreased

infrared emission over vegetated surfaces increases the

net radiation absorbed at the surface. This energy feeds

evaporation, transpiration, and sensible heating, and re-

sults in a moister lower atmosphere with higher equivalent

potential temperature than over bare soil (Anthes 1984).

The effect of vegetation and soil moisture on soil heat

capacity and thermal inertia can produce pronounced soil

temperature and air temperature gradients in response

to vegetation density gradients (e.g., Smith et al. 1994).

Compared with areas with healthy vegetation, high tem-

peratures, and drier soils in areas with struggling vegeta-

tion lead to high sensible heat fluxes and suppressed latent

heat fluxes. These gradients and mesoscale heterogene-

ities may induce perturbation boundary layer circulations

(Anthes 1984; Segele et al. 2005).

Observational studies report measurements of the ef-

fect of vegetation on the PBL. Fiebrich and Crawford

(2001) trace anomalously cool air temperatures at a single

Oklahoma Mesonet (hereinafter Mesonet) site to its prox-

imity to an irrigated cotton field. Similarly, growing win-

ter wheat can develop dewpoint anomalies, while distinct

warm anomalies appear over areas of harvested wheat

(McPherson et al. 2004; Haugland and Crawford 2005).

Under weak synoptic forcing and when the atmosphere

is relatively dry, these warm anomalies over harvested

wheat adjacent to growing vegetation may induce cloud

formation, while areas with high latent heat fluxes such

as heavy tree cover and lakes tend to suppress clouds

(Rabin et al. 1990).

These studies highlight the need for accurate vegetation

information, as well as soil temperature and moisture

conditions, to properly initialize land surface models. The

Noah LSM employed for this study implements a monthly

climatology for sf and a constant LAI. Such coarse-

resolution data based solely on climatology are insufficient

to capture the important variations in surface character-

istics (Chang and Wetzel 1991; Crawford et al. 2001;

Santanello and Carlson 2001; Kurkowski et al. 2003). By

using climatological values for land surface characteristics,

the model does not account for short-term or annual
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variability in vegetation coverage and condition due to

variations in rainfall, forest fires, irrigation, deforestation,

desertification, crop harvesting, land usage, hail or tor-

nado damage, and temporal variations in the growth and

senescence of green vegetation. However, modeling stud-

ies implementing near real-time land surface characteris-

tics from satellite observations show great promise for

improving forecasts (e.g., Oleson and Bonan 2000; Zeng

et al. 2000; Crawford et al. 2001; Kurkowski et al. 2003).

This study represents an effort to improve the specifi-

cation of initial conditions and ultimately to facilitate

improved model forecasts of air temperature and mois-

ture, which directly affect PBL processes and convective

development. A modified version of The Pennsylvania

State University–National Center for Atmospheric Re-

search fifth-generation Mesoscale Model (MM5), version

3.6 (Dudhia 1993; Grell et al. 1995; Dudhia 2003), cou-

pled with the Noah LSM, assimilates soil temperature,

soil moisture, sf, and LAI observations for several case

studies. Model forecasts that both include and neglect

these improved initial surface conditions highlight errors

present in the physical parameterizations within the Noah

LSM. Such errors specifically suggest the need for an

improved latent heat flux parameterization. The combi-

nation of the complexity of the physical processes leading

to evapotranspiration and the assumptions inherent in

the current formulation make the latent heat flux a prime

candidate for refinement.

There exist several methods for evaluating, calibrating,

and improving land surface models. Artificial neural

networks have proven useful in assessing the perfor-

mance of land surface models and in correcting errors in

latent heat flux and have shown that problems in model

processes may lead to errors in surface energy fluxes

(Abramowitz 2005; Abramowitz et al. 2006, 2007). In a

different approach, multicriteria calibration methods can

improve estimates of parameters within land surface

models using observations of certain variables and lead to

improved flux calculations (e.g., Bastidas et al. 1999;

Gupta et al. 1999; Xia et al. 2002). This study instead de-

velops a new parameterization scheme for latent heat

flux using a principal-component regression technique. In

a novel approach to determining latent heat flux, the new

parameterization derives from surface observations

rather than from theoretical formulations.

2. Observations

The Oklahoma Mesonet (Brock et al. 1995) is a net-

work of over 117 automated surface observing stations

(Fig. 1) that provides observations every 5 min. All

Mesonet sites report the standard suite of surface ob-

servations plus soil temperature under native vegetation

at a depth of 10 cm, with approximately half of the sites

also providing measurements at 5- and 30-cm depths. Over

100 sites record soil moisture every 30 min at depths of 5,

25, 60, and 75 cm. Mesonet sites are located in several

different climate divisions across Oklahoma and in re-

gions with very different vegetation types. All Oklahoma

Mesonet data fall subject to rigorous quality assurance

procedures in order to produce reliable research-quality

data (Shafer et al. 2000), though all such data remain

subject to inevitable uncertainties (e.g., Wilson et al.

2002).

Measurements of surface energy fluxes rely on in-

strumentation deployed at selected Mesonet sites by the

Oklahoma Atmospheric Surface-layer Instrumentation

System (OASIS) project (Brotzge et al. 1999; Brotzge

2000). A special suite of OASIS instruments augments

the standard Mesonet instrumentation at 10 super sites

(Fig. 1), measuring sensible heat flux, ground heat flux,

and the four components of net radiation. The ground

heat flux is the sum of the conductive ground heat flux and

the storage ground heat flux. Each site directly measures

the conductive ground heat flux using the arithmetic

mean of two heat flux plates installed at a depth of 5 cm.

Estimates of the storage ground heat flux derive from

measurements of the soil moisture at 5 cm, an average

volume fraction of minerals and organic matter, and the

temperature within the 0–5-cm soil layer (Brotzge and

Crawford 2003).

Brotzge and Crawford (2003) blame surface energy

budget closure problems on systematic underestimates of

latent heat flux using the eddy covariance method. The

magnitude of these errors varies by solar time and season.

Similarly, Wilson et al. (2002) find a closure imbalance on

the order of 20% at FLUXNET sites, primarily due to

underestimates of both sensible and latent heat flux using

the eddy covariance technique. Rather than directly es-

timating latent heat fluxes from measurements, the re-

sidual of the surface energy balance instead provides

a proxy for latent heat flux estimates. This residual

FIG. 1. Site locations for each of the 117 Mesonet sites operating

between May 2004 and June 2006. Gray circles indicate OASIS

super sites and the circle with the square identifies the Norman site.
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approach may provide a more reasonable estimate of the

latent heat flux than direct estimates from an eddy co-

variance system (Brotzge 2004).

Vegetation fraction and LAI are calculated following

Chang and Wetzel (1991) and Yin and Williams (1997),

respectively, using biweekly maximum value composites

of normalized difference vegetation index (NDVI). The

NDVI values are compiled from daily National Oceanic

and Atmospheric Administration (NOAA) Advanced

Very High Resolution Radiometer (AVHRR) data with

a ground resolution of 1.09 km.

3. Model forecasts

a. Model description

The primary study area focuses on Oklahoma due to

the availability of Oklahoma Mesonet observations for

soil measurements and model verification. MM5 is used

to produce 48-h forecasts on four nested model domains

with 27-, 9-, 3-, and 1-km grid resolution (Fig. 2) and 23

vertical half-sigma levels. NCEP operational Eta Model

analyses and forecasts provide initial and boundary con-

ditions. Specific user-defined options for MM5 include

the Kain and Fritsch (1993) cumulus parameterization on

domains one and two only, no shallow convection, the

Hong and Pan (1996) PBL parameterization, simple ice

microphysics (Dudhia 1989), and the Rapid Radiative

Transfer Model (RRTM) longwave radiation scheme

(Mlawer et al. 1997). The Dudhia (1989) solar radiation

parameterization determines the surface downward short-

wave radiation and is called every 5 min. This scheme

systematically overestimates surface downward shortwave

radiation, with overestimates exceeding 50 W m22 under

cloudless skies. In lieu of adding explicit formulations for

ozone and aerosol absorption and Rayleigh and upward

aerosol scattering (Zamora et al. 2003), the shortwave ra-

diation is tuned for each case study to match the solar ra-

diation observations from all nine OASIS super sites. Other

options and parameters remain set to their default values.

The Noah LSM provides the multilayer soil physics and

vegetation package. This LSM contains four soil layers

depicting soil temperature and soil moisture and accounts

for vegetation categories, monthly sf, and soil texture,

and includes parameterizations for evaporation, soil

drainage, runoff, the root zone, and canopy moisture

(Skamarock et al. 2005). The Noah LSM functions as the

primary driver for land surface processes in MM5 and

contains nearly identical code to the land surface schemes

found in both the operational Eta Model and the Weather

Research and Forecasting (WRF) model. This allows for

direct compatibility between the time-dependent soil

variables and surface fluxes in MM5 forecasts and the Eta

Model analyses that initialize the forecasts.

b. Surface fluxes in the Noah LSM

In the current formulation within the Noah LSM, the

latent heat flux E is the sum of the contribution from

each of three types of evaporation: direct evaporation

from bare soil (Edir), transpiration from the vegetation

canopy and roots (Et), and evaporation of precipitation

intercepted by the vegetation canopy (Ec). Since the

predominant vegetation cover is grass at Oklahoma

Mesonet sites, it is assumed that the canopy water

FIG. 2. Location of the four nested MM5 domains with 27-, 9-, 3-, and 1-km grid resolution.
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content is zero in the experiments that follow, thereby

removing the contribution to evaporation by moisture in

the vegetation canopy (cf. Betts et al. 1997). The total

latent heat flux is therefore the sum of the direct evap-

oration and canopy transpiration terms. This is a rea-

sonable assumption given the relative insignificance of

Ec compared with Edir and Et.

1) DIRECT EVAPORATION FROM BARE SOIL

The direct evaporation term is a simple linear rela-

tionship based on the work of Mahfouf and Noilhan

(1991), who use a moisture availability parameter b to

scale the evaporation from the soil. The Noah LSM

employs a similar approach based on the results from

Betts et al. (1997) in which

E
dir

5 (1�s
f
)b2E

p
, (1)

where

b2 5
Q

1
�Q

w

Q
ref
�Q

w

� �2

(2)

represents a normalized soil moisture availability term,

Qw is the wilting point, Qref is the field capacity, and Q1 is

the volumetric water content of the top soil layer (Chen

and Dudhia 2001). The b term is squared as suggested

by Ek et al. (2003). The potential evaporation Ep is the

maximum possible evaporation that could occur over an

open water surface under existing atmospheric condi-

tions. The Noah LSM calculation for potential evapo-

ration involves an energy balance approach based on

the Penman relationship (Penman 1948) and includes

a stability-dependent aerodynamic resistance term Ch

(Mahrt and Ek 1984; Ek and Mahrt 1991).

2) CANOPY TRANSPIRATION

The canopy transpiration from the vegetated portion

of a model grid cell is

E
t
5 s

f
E

p
P

c
1�

W
c

S

� �0.5
" #

, (3)

where Wc is the intercepted canopy water content and S

is the maximum canopy water capacity. The plant co-

efficient Pc includes the influence of stomatal control

and is expressed as

P
c
5

r 1 D

r(1 1 C
h
R

c
) 1 D

, (4)

where r and D are functions of the thermodynamic

properties of the air at the lowest model level (Ek and

Mahrt 1991), and

R
c
5

R
cmin

(LAI)F
1
F

2
F

3
F

4

(5)

is the canopy resistance following the formulation of

Jacquemin and Noilhan (1990) where Rcmin is the mini-

mum stomatal resistance for each vegetation type. The

canopy resistance factors F1, F2, F3, and F4 represent

the effects of solar radiation, vapor pressure deficit, air

temperature, and soil moisture (Chen and Dudhia 2001).

Canopy resistance is the most important factor con-

tributing to canopy transpiration (e.g., Holtslag and Ek

1996; Ronda et al. 2001). Despite this physical importance,

the canopy resistance formulation in Eq. (5) is arguably the

most questionable term in the Noah LSM, since it simply

multiplies together four physically important atmospheric

and land surface effects. Jarvis (1976) proposed a very

similar formulation for stomatal conductance (the inverse

of resistance) based on the known independent influence

of four variables. Without knowing the effect on stomatal

conductance from each variable acting in concert, Jarvis

(1976) hypothesized that the final stomatal conductance

‘‘is the result of complete expression of the influence of all

the variables without any synergistic interactions.’’ The

final stomatal conductance is thus the product of the per-

centages of the maximum stomatal conductance contrib-

uted by each variable. This formulation, which is adopted

and implemented in several land surface models with some

modification (e.g., Noilhan and Planton 1989; Jacquemin

and Noilhan 1990; Chen and Dudhia 2001), leads to the

four canopy resistance factors in Eq. (5).

c. Selection of case studies

To aid in a selection of several case studies, MM5 is used

to compute daily 48-h forecasts during the entire warm

season of 2004. Results from 9-, 24-, and 33-h forecasts of

2-m air temperature and mixing ratio for each run are

compared with corresponding Mesonet observations. The

four selected cases provide a representative sample of the

accuracy and typical errors seen in these warm season

forecasts. These four case studies start at 1200 UTC 3 May,

20 July, 1 August, and 3 September 2004. In all cases, no

strong synoptic features passed over Oklahoma. This as-

sortment of forecasts under synoptically quiescent condi-

tions provides several ideal cases for studying the impact

of improved initial conditions on surface flux forecasts and

maximizes the potential for isolating the effect of changes

to the LSM on near-surface atmospheric variables.

d. Initial conditions

To explore the importance of the land surface on the

model forecasts, two different sets of initial conditions

for the soil and land surface are used. The control MM5

(CTRL) uses a 0.158 3 0.158 climatological sf produced
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from a five-year climatology of NDVI observations

(Gutman and Ignatov 1998). The model also assumes

a constant LAI (set to 4.0) regardless of the season or

location. Eta Model analyses provide initial soil tem-

perature and soil moisture conditions.

The second MM5 (MM5VEGSOIL) initial condition

includes the 1-km resolution sf and LAI observations

derived from a 15- or 16-day NDVI composite. The

composite windows end just prior to the start date for

each case, thereby representing analyses that could be

obtained in real time. Satellite-derived sf and LAI data

cover a swath similar to the area of domain two (Fig. 2).

LAI and sf values for points outside the area of the

satellite pass in domains one and two remain set to

a constant 4.0 and climatology, respectively.

The MM5VEGSOIL initial condition also includes

Mesonet soil data interpolated to the model grid using

a two-pass Barnes analysis (Barnes 1973). Soil tempera-

ture and moisture observations replace Eta Model anal-

yses of soil fields in the Noah LSM on domains three and

four in the top two layers for soil temperature and the top

three layers for soil moisture. Observations of soil tem-

perature at a depth of 5 cm replace the soil temperature

in the 0–10-cm model layer. To maintain consistency with

soil temperatures in the deeper model layers, a cubic

spline interpolation supplies a fit between all three ob-

served soil temperatures and the initial model soil tem-

perature in the 40–100-cm layer, with the assumption that

the 40–100-cm layer temperature is valid at a depth of

70 cm. The interpolated value at a depth of 25 cm re-

places the initial MM5 soil temperature in the 10–40-cm

layer. The observed volumetric water content at depths of

5, 25, and 60 cm replaces the initial soil moisture field in

the 0–10-, 10–40-, and 40–100-cm model layers, respec-

tively. The initial soil temperature field in the 40–100-cm

layer and both the soil temperature and moisture fields

in the 100–200-cm layer remain unchanged from the in-

terpolated Eta analyses. All soil fields for domains one

and two also remain unchanged from the Eta analyses.

The MM5VEGSOIL initial condition represents a sub-

stantially more accurate specification of the land surface

and soil conditions for the model.

e. Preliminary results

For the cases under consideration, the observed soil

moisture is considerably wetter and the observed soil

temperatures are generally cooler at the 1200 UTC start

time than the Eta analyses (Godfrey and Stensrud 2008).

The climatological sf and constant LAI values stand in

stark contrast to the sf and LAI observations. The MM5

forecasts indicate that the greatly improved initial con-

ditions in the MM5VEGSOIL forecast do not yield

dramatic improvements over the CTRL forecasts (Fig. 3),

although improvements of 20–40 W m22 are seen in

three of the four cases. However, the MM5VEGSOIL

forecasts still consistently underestimate midday latent

heat fluxes by 20%–40% compared with observations.

This occurs even though the model is given a significantly

improved characterization of the initial land surface con-

ditions. This result echoes the message from Robock et al.

(2003), who stress that initial conditions with greater ac-

curacy do not necessarily guarantee an improvement in

model performance. Further testing (not shown) indicates

that including only soil observations in the initial condi-

tions improves the latent heat flux forecasts, while in-

cluding only vegetation observations considerably worsens

the flux forecasts. The difference between these midday

latent heat flux forecasts can exceed 225 W m22. Thus, the

use of vegetation observations appears to offset the im-

provements gained from using soil observations, indicating

that errors are present within the flux formulations. It

appears that these errors primarily result from the in-

correct partitioning between the fluxes of sensible and

latent heat. Such errors highlight the need for an improved

latent heat flux parameterization.

4. Empirical latent heat flux parameterization

Given the physical importance of canopy resistance

in the canopy transpiration term of the Noah LSM,

one approach to improving short-term latent heat flux

forecasts is to focus on tuning the formulation for can-

opy resistance. An inverted form of the Noah LSM is

constructed that uses Mesonet observations as input and

calculates the values of plant coefficient Pc (and thereby

canopy resistance Rc) needed to yield the observed la-

tent heat fluxes from the OASIS super sites. Data over

a five-month period during 2004 are used as input and

results evaluated. Unfortunately, many of the resistance

values are unphysical, including exceedingly large can-

opy resistances and unbounded plant coefficients. This

occurs because either the Edir term [Eq. (1)] is greater

than the observed latent heat flux or the sum of Edir and

sfEp [Eq. (3)] is less than the observed latent heat

flux. These problems persist even after adjusting for a

620 W m22 error in the OASIS latent heat flux obser-

vations (Brotzge 2000). Thus, the Edir and Et terms clearly

yield inappropriate values when forced with observations.

Any scheme designed to forecast Pc or Rc based on these

formulae would lead to poor model forecasts of latent

heat flux. Improved forecasts for latent heat flux clearly

require a different approach. Therefore, the popular

canopy resistance approach to modeling canopy tran-

spiration is abandoned and instead a completely new

empirical latent heat flux scheme is developed. Tests

indicate that least squares simple and multiple linear
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regression models with automatic and manual predictor

selection have limited potential to provide good results.

Instead, a principal-component regression procedure is

used for predictor selection.

a. Principal-component regression

Principal-component regression techniques (e.g.,

Richman 1986; Wilks 2006) are not new in studies of the

atmosphere. Predictions of tropical precipitation from

marine surface observations (Tsonis 2002), mean win-

ter temperatures from sea surface temperatures and

pressure-surface heights (Harnack 1979), wheat yield

from temperature and rainfall observations (Wigley and

Qipu 1983), and surface ozone concentrations (Pryor et al.

1995) have all used this technique. In addition, principal-

component regression has been used to determine source

regions for fine particulates and sulfate (Wolff et al. 1984).

However, the use of this technique to predict fluxes of

latent heat from a wealth of surface observations repre-

sents a novel application.

Since the Noah LSM contains separate expressions for

latent heat flux over bare soil and vegetated surfaces,

separate principal-component regression analyses are

conducted to develop the best possible expressions for

both Edir and Et that match the observed latent heat

fluxes. Training data for both Edir and Et principal-

component regressions derive from randomly selected

sets of observations containing possible predictors and

their respective predictands, which constitute approxi-

mately half of the available data. The remaining data

are used for independent cross-validation. These in-

dependent data provide a measure of the strength of

the multiple regression relationship through several

measures, including the coefficient of determination

R2 and the residual standard error (Wilks 2006). One

negative characteristic of the coefficient of determi-

nation is that its value continually increases by simply

adding more variables to a prediction equation. Thus,

an adjusted R2 is used to correct for this problem, such

that

FIG. 3. Latent heat flux (W m22) at Norman, OK, for CTRL (black) and MM5VEGSOIL (gray dashed) forecasts for domain 4 ini-

tialized at 1200 UTC (a) 3 May, (b) 20 Jul, (c) 1 Aug, and (d) 3 Sep 2004 compared with the residual of the surface energy balance

computed from Oklahoma Mesonet observations (black dashed).
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R
2

5 1� (1� R2)
n� 1

n� p� 1

� �
, (6)

where p is the number of predictors in the multiple re-

gression model and n is the sample size (Yamane 1967).

The R
2

value justifies the results of each principal-

component regression in each independent cross-validation

dataset.

b. Selection of observations

Practical and physical considerations limit the range

of possible predictor variables in a principal-component

regression. The simplest choices for possible predictors

include combinations of variables that already exist

within the Noah LSM. To remove the influence of very

small nighttime latent heat fluxes in creating a new

scheme for latent heat flux forecasts, the principal-

component regression is provided only with sets of ob-

servations that include incoming shortwave radiation

values in excess of 10 W m22. There are also several

restrictions on the available observations from the

Oklahoma Mesonet. Data available for analysis span the

period May 2004–June 2006 with satellite-derived veg-

etation data spanning only 15 April–15 September 2004.

The observations needed to determine the surface en-

ergy balance are available every 30 min from nine

OASIS sites. Since precipitation is known to interfere

with sensible heat flux measurements, periods of rainfall

are removed beginning with the first nonzero daily

precipitation total through local midnight on the day of

the observation. This also allows elimination of the

wet canopy evaporation term during the development of

a new parameterization, such that the total latent heat

flux is simply the sum of the direct evaporation and

canopy transpiration terms.

c. Direct evaporation from bare soil

Since vegetated surfaces surround every observation

site, direct measurements of evaporation from bare soil

are unavailable. However, the long time series of avail-

able soil moisture observations contains several periods

during which the vegetation in Oklahoma suffered un-

der moderate to extreme drought conditions. The per-

manent wilting point where transpiration ceases for

most vegetation types is roughly where the matric po-

tential c 5 21500 kPa (Marshall et al. 1996). At loca-

tions where the matric potential is larger in magnitude

than the permanent wilting point, the only contribution

to the total latent heat flux is from bare soil evaporation.

By separating only those sets of observations where the

soil has reached the permanent wilting point at the 5-cm

level, as calculated from the matric potential formula-

tion in Basara and Crawford (2000), the residual of the

surface energy balance becomes a good approximation

to the direct evaporation from bare soil. This collection

of bare soil evaporation observations comprises more

than 6300 sets of observations and is used to determine

a new Edir parameterization.

From an initial wide selection of possible variables,

multiple passes through a principal component analysis

lead to a reduced pool of possible predictors for Edir. In

addition to the overarching goal of achieving the largest

possible R
2

in the cross-validation data, several other

factors contribute to the decision to retain or eliminate

variables from the regression. These factors include the

ease of implementation of the resulting flux equation in

the Noah LSM, the physical relevance of each variable to

evaporative processes, and the statistical significance of

each variable when included in a multiple linear re-

gression. Additionally, several combinations of variables

possess strong mutual correlations and must not appear

together in the final regression equation. The existence

of highly correlated variables justifies the use of the

principal-component approach in variable selection, even

if the final regression equation retains all of the principal

components. The resulting equation for direct evapora-

tion from bare soil is

E
dir

5 22.33 1 0.0226[R
g
(1� a)](3/2) Q

1
�Q

w

Q
ref
�Q

w

� ��

� 3.426V 1 3650w

�
(1� s

f
), (7)

where Rg is the incoming solar radiation (W m22), a is

the albedo based on the Noah LSM land use category,

Q1 is the volumetric water content (m3 m23) at 5-cm

depth, Qw is the wilting point and Qref is the field ca-

pacity, V is the 10-m wind speed (m s21), and w is the

2-m mixing ratio (kg kg21). As implemented in the Noah

LSM, Q1 is the volumetric water content of the top (0–

10 cm) soil layer, Qw and Qref refer to the wilting point

and field capacity of the relevant gridded soil type, and V

and w are the wind speed and mixing ratio at the lowest

model level. The R
2

for the independent cross-validation

data is 0.61, giving a correlation coefficient between

forecasts and observations of 0.78, and the residual stan-

dard error is 48.4 W m22. By comparison, the R2 between

the same predictand and the Edir from the original Noah

LSM formulation is 0.52. Compared with the existing Edir

parameterization in the Noah LSM, the forecasts from the

new empirical scheme more closely match the total latent

heat flux observations when the soil is dry enough to as-

sume senescent vegetation, particularly for increased Edir

(Fig. 4).

As indicated by locally weighted regressions prior to

the principal-component regression, each of the variables
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in Eq. (7) exhibits a quasilinear relationship with the

observed latent heat flux during dry conditions. The

second and most important term on the right-hand side

of Eq. (7) materializes by recognizing that the available

soil moisture tempers the evaporative power of the sun.

An excellent linear relationship with Edir in a locally

weighted regression arises by multiplying the effective

incoming solar radiation (incoming solar radiation minus

outgoing solar radiation) raised to the 3/2 power by the

normalized soil moisture availability term b from Eq. (2).

The negative coefficient in the wind speed term in

Eq. (7) may seem somewhat counterintuitive. However,

studies have shown that the eddy correlation method

underestimates the sensible heat flux (e.g., Barr et al.

1994; Lee and Black 1994) and this underestimation in-

creases with decreasing friction velocity (cf. Barr et al.

2006). As the wind speed increases, the sensible heat flux

increases and the residual of the surface energy balance

decreases to more reasonable values. The small wind

speed term in Eq. (7) likely accounts for this behavior.

Stomatal stress in the vegetation that is at or near its

permanent wilting point may provide a second possible

explanation for the negative coefficient. Studies show

that transpiration generally increases with increasing

wind speed up to a point where it may then decrease

slightly with wind speed (Chang 1968; Dixon and Grace

1984), particularly if the vegetation is already dry (e.g.,

Lydolph 1964). Regardless, the overall contribution of

this term to the evaporation from bare soil is quite small.

The small mixing ratio term in Eq. (7) likely appears

because of the dependence of leaf-to-air vapor pressure

deficit on mixing ratio. At large vapor pressure deficits,

and by extension low mixing ratios, stomatal closure re-

duces transpiration (El-Sharkawy et al. 1985).

With the exception of the sf term, each term in Eq. (7)

represents a single variable present in the principal

component analysis. Since each component uniquely

contains a very strong signal from one of these three

variables, the final regression equation retains all three

principal components. A multiple linear regression on

these variables produces the same regression equation,

but the large correlations between the variables justifies

using the principal-component regression approach both

to ascertain the significance of the mutual correlations

and as a robust variable-selection method.

d. Canopy transpiration

With a proper parameterization for Edir in place, a

similar principal-component regression procedure based

on 9239 sets of observations leads to a new empirical

canopy transpiration scheme. The canopy transpiration

term defined by

E
t
5

E
obs
� E

dir

s
f

(8)

is the predictor in the multiple regression, where Eobs is

the observed total latent heat flux and Edir is the em-

pirical direct soil evaporation term from Eq. (7) that

already includes the sf weighting.

Observed variables and those transformed based on

physically plausible relationships and locally estimated

regressions compose a diverse set of possible forecast

variables. As with the Edir parameterization, a principal

component analysis combined with physical, statistical,

and practical considerations leads to the final regression

equation for canopy transpiration,

E
t
5h�1392 1 0.9154 R

g
(1� a)

Q
3
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w

Q
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�Q

w
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air
)

� � is f
1 6.116(LAI), (9)

FIG. 4. Direct soil evaporation from the original Noah LSM

formulation (black) and the empirical scheme (gray) compared

with the observed total latent heat flux under dry soil conditions.
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where Q3 is the volumetric water content (m3 m23) at

60-cm depth, Tair is the 9-m air temperature (K), ws(Tair)

is the saturation mixing ratio at the 9-m air temperature

(kg kg21), and the remaining terms are the same as those

defined for Eq. (7). The Qw and Qref terms correspond

with the measured soil textures at a depth of 60 cm at

each Oklahoma Mesonet site. As implemented in the

model, Q3 is the volumetric water content of the third

(40–100 cm) soil layer and Tair, w, and ws are the air

temperature, mixing ratio, and saturation mixing ratio at

the lowest model level. A large correlation for each

variable corresponds with one of each of the four prin-

cipal components. Therefore, the final regression

equation again retains the contribution from all four

principal components.

The first term in Eq. (9) describes how the root-zone

soil moisture availability scales the evaporative power

of the sun. This is the dominant term in the regression

equation and its inclusion supports the results of an

observational study showing a strong linear relationship

between root-zone soil moisture and both sensible and

latent heat fluxes (Basara and Crawford 2002). The re-

maining air temperature, relative humidity, and LAI

terms in the regression equation are less significant and

their coefficients may serve as tunable parameters for

different locations. Note, however, that Eq. (9) includes

the effects of solar radiation, LAI, sf, vapor pressure

deficit, air temperature, and soil moisture just as in the

theoretical parameterization (i.e., Jacquemin and Noilhan

1990; Chen and Dudhia 2001) that appears in the original

Noah LSM.

The R
2

for the independent cross-validation data is

0.72 and the residual standard error is 98.32 W m22,

but recall that these numbers refer to the predictand

from Eq. (8) and neglect the scaling by sf. Using only

the independent cross-validation data and summing

the Et forecasts from Eq. (9) with the Edir forecasts

from Eq. (7) to arrive at the total latent heat flux

forecast, the correlation coefficient between the fore-

cast and observed total latent heat flux is 0.94 with

a residual standard error of 45.5 W m22. In contrast,

the R2 between the original total latent heat flux

forecasts from the Noah LSM and the observed latent

heat flux for the same pool of observations is 0.83 with

a residual standard error of 83.8 W m22. Combined

into a single total latent heat flux term, the empirical

Edir and Et parameterizations vastly improve the latent

heat flux forecasts by the Noah LSM when driven by

observations (Fig. 5). The original parameterization

tends to overestimate latent heat fluxes under a vari-

ety of conditions, while the new parameterization

corrects for this problem without introducing a nega-

tive bias.

5. Results

Latent heat flux forecasts from model predictions

implementing the new empirical latent heat flux scheme

during the daytime and initialized with both satellite-

derived vegetation indexes and soil temperature and

moisture observations (MM5LATENT) highlight the

potential value of this empirical parameterization by

showing vast improvement for all four cases over both

the CTRL and MM5VEGSOIL forecasts when com-

pared with observations at Norman, Oklahoma (Fig. 6).

The maximum day one values of latent heat flux are

increased by an average of 160 W m22 compared to the

CTRL forecast in much better agreement with the ob-

servations. Thus, the MM5LATENT forecast no longer

severely underestimates daytime latent heat fluxes.

Initial testing (not shown) indicates that nighttime

fluxes using the new flux scheme may exceed observations

by nearly 50 W m22, especially shortly after sunset. This

is attributed to limiting the observations in the principal-

component regression to those associated with incoming

solar radiation values in excess of 10 W m22. To over-

come this limitation, the latent heat flux parameterization

reverts to the original canopy resistance approach when

modeled downward shortwave radiation falls below

10 W m22. Results from this combined new daytime and

old nighttime flux scheme are shown in Fig. 6.

With reasonable latent heat flux forecasts, the pre-

viously overestimated sensible heat flux forecasts more

FIG. 5. Forecasts of total latent heat flux for 9239 forecast–

observation pairs by the original Noah LSM formulation (black)

and the new empirical direct soil evaporation and canopy tran-

spiration schemes (gray) compared with the observed total latent

heat flux for the period 15 Apr–15 Sep 2004.
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closely resemble the observations (Fig. 7). At Norman,

the maximum day one values of sensible heat flux are

decreased by an average of 134 W m22 compared to the

CTRL forecasts. However, the MM5LATENT ground

heat flux forecasts show little to no overall improvement

over CTRL forecasts (not shown), suggesting that the

main benefit to the new latent heat flux scheme is a more

accurate partitioning of the sensible and latent heat fluxes.

The original Noah LSM adequately captures the sum

of the latent and sensible heat fluxes when compared

with observations, but fails to properly partition each.

With a new parameterization for latent heat flux, the

surface energy budget changes. The original version of

the Noah LSM implemented here does not force closure

of the surface energy budget, though the most recent

version more adequately addresses surface energy bud-

get closure problems. To force closure of the surface

energy budget in the modified Noah LSM for use in

long-term climate modeling applications, one possible

method calculates the sensible heat flux from the re-

sidual of the surface energy balance within the model. A

second approach does not force closure of the surface

energy budget and instead calculates the sensible heat

flux from the original formula. Tests using both ap-

proaches in coupled MM5 forecasts that implement the

empirical direct soil evaporation and canopy transpira-

tion schemes show that closing the surface energy bud-

get does not significantly improve or degrade surface

energy flux forecasts. Thus, the modified Noah LSM

calculates each component of the surface energy balance

individually and, like the original model formulation,

does not force closure of the surface energy budget.

The new latent heat flux scheme also yields improved

2-m temperature forecasts (Fig. 8), which agree partic-

ularly well with the observations during the first 6 to 9 h

after sunrise during the times of maximum warming.

Cumulative errors in the surface energy balance likely

cause the air temperature to start decreasing an hour or

FIG. 6. Latent heat flux (W m22) at Norman, OK, for CTRL (black), MM5VEGSOIL (gray dashed), and MM5LATENT (gray) domain

four forecasts initialized at 1200 UTC (a) 3 May, (b) 20 Jul, (c) 1 Aug, and (d) 3 Sep 2004 compared with the residual of the surface energy

balance computed from Oklahoma Mesonet observations (black dashed).
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two too early in the diurnal cycle as seen in all the fore-

casts. The sharp drop in 2-m air temperature near sunset

is a consequence of the extrapolation errors during PBL

regime transitions from free convection to stable condi-

tions and not from surface energy flux errors.

The results for 2-m mixing ratio forecasts also indicate

that the new latent heat flux parameterization yields im-

proved predictions (Fig. 9). MM5 typically underesti-

mates the 2-m mixing ratio, regardless of the latent heat

flux parameterization or initial conditions. However, with

the exception of the unrealistic spike in mixing ratios

during PBL regime transitions, again caused by extrap-

olation errors, mixing ratio forecast errors decrease for

the MM5LATENT forecasts compared with the other

predictions.

Comparisons between the model and surface observa-

tions from all Mesonet stations across the main body of

Oklahoma show similar results. However, observations

from Oklahoma serve as the training data for the empirical

latent heat flux parameterization in the Noah LSM. Sets of

independent observations from two locations outside of

Oklahoma help accomplish a simple verification of the

new scheme by comparing modeled fluxes with data that

do not compose any portion of the training data used

to develop the empirical equations. Two meteorological-

flux towers, maintained by the United States Department

of Agriculture (USDA) Agricultural Research Service

(ARS) National Soil Tilth Laboratory (NSTL), directly

measure the four components of the surface energy bal-

ance near Ames, Iowa. Similar terrain to that in Oklahoma

surrounds both sites: one tower stands over a soybean

field and the other tower resides over a corn field. Direct

measurements of sensible and latent heat flux occur

roughly 2 m above the vegetation canopy at each location

[see Kustas et al. (2005) for more information]. Data are

available for the 20 July, 1 August, and 3 September 2004

case studies. The simultaneously measured fluxes over

the corn and soybean fields may differ by more than

100 W m22 on these three days, highlighting the vari-

ability of surface fluxes over small spatial scales as well as

the difficulty of comparing gridded model output with

point measurements of atmospheric fluxes.

FIG. 7. As in Fig. 6, but for sensible heat flux.
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Since soil temperature and moisture observations are

only available from the Oklahoma Mesonet, the im-

proved initial conditions in the MM5LATENT forecasts

only include the satellite-derived vegetation indexes. As

with the CTRL forecasts, the soil initial conditions in

MM5LATENT over Iowa derive from the Eta analyses.

Since the gridded model results are interpolated to each

flux site from a 9-km grid, the modeled fluxes over the

nearly collocated corn and soybean fields are virtually

identical. Despite lacking accurate initial soil temperature

and moisture conditions, the 20 July and 3 August 2004

MM5LATENT forecasts perform remarkably well com-

pared with the latent heat fluxes measured over both corn

and soybeans. The MM5LATENT forecasts have smaller

flux errors than seen in the CTRL forecast by as much as

115 W m22 (Fig. 10). It is curious that the CTRL forecast

overestimates rather than underestimates the observed la-

tent heat flux (as seen over Oklahoma), yet the new em-

pirical latent heat flux scheme realistically captures the total

evapotranspiration. Admittedly, the MM5LATENT fore-

cast underestimates by roughly 80 W m22 the observed

latent heat fluxes in the forecast initialized on 3 September

2004 with the CTRL providing a slightly better forecast.

Without soil moisture observations, it is difficult to ascertain

the reasons for the differences between the flux forecasts.

However, on average the new latent heat flux formulation

improves the flux forecasts over Ames more than it de-

grades them, providing further evidence that this new latent

heat flux formulation is beneficial.

6. Discussion

While recent advances in NWP models have im-

proved short-term forecasts, the Noah LSM still in-

accurately predicts near-surface conditions such as air

temperature, mixing ratio, soil temperature and mois-

ture, and surface energy fluxes. Assessing and reducing

these model errors remains a difficult task because of the

wide variety of errors within the model and the lack of

sufficient data for an accurate specification of the land

surface. As others have suggested (e.g., Matsui et al.

2005), calibration of transpiration schemes within land

FIG. 8. As in Fig. 6, but for the 2-m air temperature (K).
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surface models requires reliable soil and vegetation data.

The availability of Oklahoma Mesonet observations of

soil temperature and moisture, as well as vegetation

conditions based on real-time satellite observations, pro-

vides a unique opportunity to begin the process of im-

proving Noah LSM parameterizations by initializing the

model with a considerably improved characterization of

the land surface. Indeed, for the case studies discussed

here, soil moisture and vegetation conditions strongly

impact model forecasts.

Despite providing the Noah LSM with improved ini-

tial conditions, the model forecasts fail to capture sur-

face energy fluxes realistically. For the cases described in

this study, the difference between the observed and

MM5VEGSOIL latent heat fluxes may exceed 150 W m22

and sensible heat flux errors may exceed 120 W m22 in

a 48-h forecast period. This leads to temperature errors in

excess of 28C and mixing ratio errors that exceed 3 g kg21.

While these errors may seem large, they represent an im-

provement over the CTRL forecasts that do not use any

Mesonet observations or satellite-derived vegetation

information. These results emphasize the potential forecast

value of minimizing errors in land surface initial condi-

tions, while illustrating the profound difficulty in evaluat-

ing individual model components when all of the schemes

are interdependent. Because the land surface physics

determine the partitioning of the surface energy budget,

improvements for forecasts with excellent soil and vege-

tation initial conditions require a careful calibration of

many of these interdependent parameterization schemes

within the Noah LSM.

In an attempt to improve the latent heat flux predictions,

a new empirical parameterization is developed from a

wealth of unique surface, soil, and vegetation observations

that dramatically improves latent heat flux forecasts in the

Noah LSM when compared with OASIS flux observa-

tions. Applying a completely new approach, this scheme

replaces the usual theoretical formulations for latent heat

flux. For one case study, the error in the maximum daily

latent heat flux falls from close to 150 W m22 for the

MM5VEGSOIL forecast to approximately 12 W m22

using the new empirical parameterization for latent heat

FIG. 9. As in Fig. 6, but for the 2-m mixing ratio (g kg21).
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flux starting with the same set of initial conditions. That

this relatively simple approach outperforms the traditional

theoretical formulations for several case studies highlights

the weakness in the current physically based methods for

calculating latent heat flux. Forecasts using the new latent

heat flux formulation show improvements in daily maxi-

mum air temperature and mixing ratio forecasts of greater

than 48C and 2 g kg21 over CTRL forecasts with the same

initial conditions and model formulations present in the

operational version of the Noah LSM. While physically

based parameterizations are generally preferred for a va-

riety of reasons, the formulation that yields the best fore-

casts should take priority. Improving upon this empirical

formulation with a theoretical approach may prove quite

difficult. However, other statistical methods or artificial

neural networks may yield similar or better results than the

present approach.

The empirical formulation determined through a

principal-component regression contains many of the

same variables present in the more complicated theoretical

schemes for latent heat flux. This result implies that the

statistical approach reveals predictor variables that match

the underlying physical processes driving the flux of latent

heat. However, this is just one of many possible results;

the empirical relations may need slight modifications for

different land cover types, particularly for the less in-

fluential terms in the regression, the coefficients of which

may serve as tuning parameters for different locations.

The current study, while limited in scope, provides some

evidence that such an approach would work well, par-

ticularly in light of the positive results of independent

tests of the empirical scheme in Iowa. Future studies

could apply a similar approach to flux measurements

collected in different vegetation regimes to create em-

pirical flux formulations for several biomes. This could

lead to rapid improvements in model flux predictions.

The dominant term in both the Edir and Et equations

in the empirical latent heat flux parameterization requires

FIG. 10. Latent heat flux (W m22) near Ames, IA, for CTRL (black) and MM5LATENT (gray) forecasts initialized at 1200 UTC (a)

20 Jul, (b) 1 Aug, and (c) 3 Sep 2004 compared with observations of latent heat flux over a soybean field (dotted) and over a corn field

(dashed).
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a measure of soil moisture. This suggests that including

soil moisture alone in model initializations has the po-

tential to improve maximum daily air temperature fore-

casts by 28–48C. This result underscores the importance of

deploying a widespread soil moisture monitoring network.

While the observations from Oklahoma comprise

a wide range of temperature, moisture, wind, and vege-

tation and soil conditions, indicating the applicability of

the new latent heat flux parameterization to new locations

across North America, the behavior of the new scheme

remains unclear during precipitation events and when the

ground lies under snow cover. These remaining questions

warrant further testing. Nevertheless, the scheme im-

proves short-term forecasts of surface energy fluxes over

crops and grassland for the selected case studies. These

improved forecast fluxes, which directly affect more tan-

gible temperature and moisture variables, have many

implications for agriculture, energy, transportation, and

other weather-sensitive industries.

Unfortunately, the new latent heat flux formulation

does not alleviate the remaining problems in the predicted

sensible and ground heat fluxes. More accurate sensible

and ground heat fluxes are needed for realistic surface

energy balances and further-improved air temperature

and moisture forecasts. It may be that using a principal-

component regression approach can yield improvements

in the predictions of sensible heat flux. For ground heat

flux, the four soil layers currently in the Noah LSM may

fall short of the number of soil levels required to accurately

represent soil processes (e.g., Santanello and Carlson

2001). Further research using unique datasets to accurately

specify the land surface state is needed to develop and

evaluate new parameterizations for surface fluxes.
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