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ABSTRACT

Proper partitioning of the surface heat fluxes that drive the evolution of the planetary boundary layer in
numerical weather prediction models requires an accurate specification of the initial state of the land
surface. The National Centers for Environmental Prediction (NCEP) operational Eta Model is used to
produce land surface analyses by continuously cycling soil temperature and moisture fields. These fields
previously evolved only in response to radiation budget constraints and modeled precipitation, but NCEP
recently upgraded the self-cycling process so that soil fields respond instead to the radiation budget and
observed precipitation. A comparison of 0000 and 1200 UTC Eta Model analyses of soil temperature and
moisture at several soil depths with observations from the Oklahoma Mesonet during 2004 and 2005 shows
that there are strong biases in soil temperature and a severe underestimation of soil moisture at all depths.
After the change to a new assimilation scheme, there is notable improvement in the magnitude of the
analyzed soil moisture fields, although a strong dry bias persists in the soil moisture field. A simple one-layer
slab soil model quantifies the effect of such soil moisture errors on the diurnal cycle of soil temperature and
reveals that these soil moisture errors alone may account for only 1.6°C increases in predicted maximum soil
temperatures during the day and temperature reductions of the same magnitude at night. The much larger
remaining soil temperature errors possibly stem from documented problems with the solar radiation and
longwave parameterizations within the Eta Model.

1. Introduction

Numerical weather prediction models require an ac-
curate representation of initial land surface conditions
in order to partition properly the sensible and latent
heat fluxes that drive the evolution of the planetary
boundary layer. Models accomplish the exchange of en-
ergy between the land surface and the atmosphere
through land surface parameterizations (e.g., Bhum-
ralkar 1975; Blackadar 1976; Deardorff 1978; McCum-
ber and Pielke 1981; Pan and Mahrt 1987; Noilhan and

Planton 1989), which characterize the state of the land
surface and forecast the evolution of the lowest layer of
the model atmosphere. The surface energy balance re-
lies strongly upon the soil and near-surface conditions
and plays a critical role in determining the prognostic
variables in land surface models. Vegetation coverage,
atmospheric conditions, and the physical properties of
the soil impact surface energy fluxes, which both influ-
ence and depend heavily upon soil temperature and soil
moisture conditions. Soil moisture is an important com-
ponent describing the land surface and provides a key
link between the atmosphere and the water and energy
balances at the surface of the earth (Wei 1995; Robock
et al. 2000; Leese et al. 2001). It influences the available
water for plant transpiration, and plays a role in the
mass balance for many forecast models. Soil thermal
conductivity estimates, which facilitate the proper heat
transfer within the soil, also strongly depend upon soil
moisture specifications. For calculations of soil heat
transfer, the most sophisticated land surface parameter-
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izations require not only near-surface soil tempera-
tures, but also temperature profiles within the soil (e.g.,
Viterbo and Beljaars 1995; Chen and Dudhia 2001).
Together, soil temperature and moisture work in con-
cert to directly influence ground, sensible, and latent
heat fluxes and affect forecasts of temperature, mixing
ratio, cloud cover, and precipitation.

Several studies have demonstrated sensitivities of
forecasts of near-surface variables to soil water content.
An inspection of the relationship between soil moisture
variations and surface turbulent energy fluxes for a va-
riety of vegetation types in different land surface mod-
eling schemes reveals that energy fluxes display more
sensitivity for dry soils than for wet soils and that
sparsely vegetated areas require the most accurate soil
moisture information (Dirmeyer et al. 2000). Changes
in soil moisture modify the balance between latent and
sensible heat fluxes and can influence surface tempera-
tures or affect turbulent transfer in the boundary layer
(McCumber and Pielke 1981). Soil moisture inhomoge-
neities may also aide in dryline development (Ziegler et
al. 1995). The importance of soil moisture is illustrated
by Pan and Mahrt (1987), who couple a one-dimen-
sional model of the planetary boundary layer (Troen
and Mahrt 1986) with a two-layer soil hydrology model
(Mahrt and Pan 1984) and find that surface evaporation
can drive boundary layer development.

Soil moisture also influences the development of
deep convection due to the influence of soil moisture
on latent heat fluxes and boundary layer moisture
(Clark and Arritt 1995). Yan and Anthes (1988) inves-
tigate the effect of soil moisture variations on precipi-
tation patterns by simulating adjacent strips of moist
and dry land. They find that for sufficiently wide hori-
zontal strips under convectively unstable conditions,
the inhomogeneities in surface moisture lead to gradi-
ents of ground temperature that eventually help pro-
duce sea-breeze circulations and an increase in convec-
tive rainfall. This result complements the observations
of Pielke and Zeng (1989), who show increases in avail-
able buoyant energy when irrigated land lies adjacent
to natural grassland, compared with natural grassland
alone. Soil moisture further affects boundary layer
cloud development by increasing cloud cover for both
moist and dry soils, depending on the strength of the
stability above the boundary layer (Ek and Holtslag
2004).

Numerical and observational studies of soil moisture
reveal that soil moisture anomalies influence regional
atmospheric conditions over time scales of 2 to 3
months (Liu et al. 1993; Vinnikov et al. 1996), with
variations in temporal scales of soil moisture attribut-
able to the seasonal cycle of potential evaporation (En-

tin et al. 2000). After simulating soil moisture anoma-
lies, there is evidence that soil moisture affects model
forecasts of precipitation, atmospheric moisture, and
temperature for several weeks (Walker and Rowntree
1977; Rowntree and Bolton 1983). Modeling studies of
soil temperature and moisture conditions show that dif-
fering soil moisture initializations influence monthly or
seasonal temperatures and precipitation patterns (Rind
1982; Betts et al. 1996) and that these initial conditions
again possess a persistence time scale of months to sea-
sons (Yeh et al. 1984; Walsh et al. 1985; Vinnikov and
Yeserkepova 1991; Gao et al. 1996; Liu and Avissar
1999a,b). Monthly forecasts also show sensitivity to ini-
tial soil moisture conditions, displaying increased skill
for precipitation and air temperature forecasts with
more realistic land surface initializations (Koster et al.
2004). Other studies report that soil moisture anomalies
also affect extreme precipitation forecasts on monthly
time scales (Beljaars et al. 1996; Viterbo and Betts
1999). In seasonal predictions, Fennessy and Shukla
(1999) investigate the role of initial soil moisture using
ensembles of global climate model simulations and find
that increases in initial soil wetness lead to increased
seasonal evaporation, decreased seasonal mean surface
air temperatures, and generally increased seasonal
mean precipitation in many regions. Other authors as-
sert that the seasonal evolution of the atmosphere in a
regional atmospheric model is dependent upon initial
soil moisture and landscape specification (Pielke et al.
1999). Thus, when compared with soil temperature, soil
moisture clearly has more interannual variability and
more strongly influences forecasts (Liu and Avissar
1999a,b; Rodell et al. 2005).

While soil moisture appears to be the most important
factor for land surface initializations (Gannon 1978;
McCumber and Pielke 1981; Smith et al. 1994), one
should not underestimate the role of soil temperature
in the evolution of the lower atmosphere, especially for
short-range forecasts. Without accurate soil tempera-
ture information, a planetary boundary layer scheme
may incorrectly distribute heat near the surface. Sub-
strate temperatures that are too cold or warm lead to a
surface cooling or warming bias (Dudhia 1996). Long-
wave radiation loss is a function of soil temperature and
directly affects the surface radiation budget. Ground
heat flux also is a function of soil temperature (Brotzge
and Crawford 2003) and affects the sensible heat flux,
boundary layer growth and decay, turbulence, and air
temperature. Additionally, there are successful at-
tempts at retrieving soil moisture from more easily ob-
tained soil temperature observations (e.g., Xu and
Zhou 2003).

Clearly, forecast models require both accurate soil
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temperature and soil moisture initializations with ap-
propriate formulations of soil hydraulics and thermo-
dynamics. Though efforts are under way to provide
more extensive networks of soil moisture data from a
variety of remote sensing and direct observational
sources (Entekhabi et al. 1999; Leese et al. 2001;
Seuffert et al. 2004), routine in situ observations of soil
temperature and moisture suitable for data assimilation
are currently unavailable over large areas of the conti-
nental United States and the world.

Because of the absence of a large observational soil-
monitoring network, many forecast models implement
complex land surface models to estimate soil hydrol-
ogy. The National Centers for Environmental Predic-
tion (NCEP) coupled, operational, mesoscale Eta
Model (Black 1994) produces land surface analyses by
continuously cycling temperature and moisture fields
within the Noah land surface model (LSM; Chen et al.
1996; Koren et al. 1999). In the past, these fields
evolved only in response to radiation budget con-
straints and modeled precipitation, but NCEP recently
upgraded the self-cycling process so that soil fields re-
spond instead to radiation budget constraints and ad-
justed precipitation observations from both radar and
gauge data over the United States.

Many modeling efforts have used NCEP Eta Model
analyses and forecasts over the continental United
States as initial and boundary conditions for a variety of
applications (e.g., Colle et al. 2001; Bright and Mullen
2002; Stensrud and Weiss 2002; Westrick et al. 2002;
Zehnder 2002; Brennan et al. 2003; Chen et al. 2004;
Hart et al. 2004; Hoadley et al. 2004; Galewsky and
Sobel 2005; Zamora et al. 2005; Zhong et al. 2005). The
Eta Model therefore provides very important initial
land surface conditions that strongly influence forecasts
for both operational and research purposes. Unfortu-
nately, many land surface models, including the Noah
LSM, do not capture observed soil moisture variations
when forced with atmospheric observations or cycled
model output (Robock et al. 2000). Marshall et al.
(2003) find a strong positive bias in soil moisture from
the Eta Model in comparison to Oklahoma Mesonet
observations, but also noted that a change in the Eta
Model initialization procedure to a continuous self-
cycling initialization for soil moisture significantly miti-
gated this bias. Marshall et al. (2003) also report a warm
bias in soil temperatures at a depth of 5 cm in the late
afternoon and a cool bias in the early morning. On the
other hand, Robock et al. (2003) find good agreement
when comparing soil temperature and moisture output
from a more recently implemented version of the Noah
LSM with observations from the Oklahoma Mesonet
averaged over all of Oklahoma during 1998–99.

Both improper initial conditions and inaccuracies in
model physical parameterizations lead to forecast er-
rors in numerical weather prediction models. This study
evolves out of a need to assess the land surface infor-
mation provided as initial conditions for modeling stud-
ies and operational forecasts in an effort to ultimately
improve parameterizations and short-term forecasts.
Since operational forecast models derive the soil tem-
perature and soil moisture fields without direct obser-
vations of these very important land surface param-
eters, a long-term comparison with observations may
highlight problems in the model physics and lead to
forecast improvements in coupled models that imple-
ment the Noah LSM. This assessment compares Eta
Model analyses of soil temperature and moisture at
0000 and 1200 UTC with observations from the Okla-
homa Mesonet between 1 March 2004 and 1 October
2005.

2. Model description

The NCEP Eta Model (Black 1994) is initialized
from analyses provided by the Eta Data Assimilation
System (EDAS; Rogers et al. 1996; Nelson 1999). The
EDAS first produces a 3-h forecast from its own analy-
sis over the continental United States. The system then
uses this forecast as a background field for assimilating
subsequent observations over this 3-h period and pro-
duces a new analysis valid at the end of the 3-h window.
This process continues indefinitely, with forecasts out
to 84 h produced from the most recent EDAS analysis
every 6 h. The Eta Model produces each EDAS fore-
cast, and consequently the initial atmospheric and soil
conditions are consistent with the forecast model and
match its resolution, physics, and dynamics (Rogers et
al. 1996). The absence of a complete set of observations
of soil temperature and soil moisture necessitates con-
tinuously self-cycling soil fields within the EDAS with-
out observational corrections or soil moisture nudging
toward climatology. These soil fields evolve only in re-
sponse to external forcing from model physics and sur-
face forcing in the form of precipitation and the surface
radiation balance within the EDAS.

The Noah LSM contains the prognostic equations for
the soil thermodynamics and hydrology components of
the EDAS. A diffusion equation for soil temperature
controls the ground heat flux and is a highly nonlinear
function of the nondimensional soil volumetric water
content. The prognostic equation for the soil volumet-
ric water content is a function of the soil water diffu-
sivity and the hydraulic conductivity, which are in turn
nonlinearly dependent upon the volumetric water con-
tent. Chen and Dudhia (2001) detail both sets of these
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equations and discuss the assumptions and limitations
involved with their use.

Prior to a modification on 16 March 2004, the EDAS
assimilated hourly precipitation data consisting of radar
and gauge observations from NCEP stage II and stage
IV analyses (Fulton et al. 1998; Lin et al. 2005). These
analyses exhibit a systematic dry bias that, when used as
the driver for soil moisture, leads to drier soil. Follow-
ing an adjustment on this date, EDAS calculates a long
history of net deficits or surpluses in precipitation by
comparing its cumulative 24-h precipitation against
daily gauge analyses, which are inflated by 10% to cor-
rect for catchment errors. Adjustments to the EDAS
hourly precipitation input based on this history attempt
to eliminate the deficit or surplus over 24 h. Adjust-
ments remain limited to �20% of the hourly precipita-
tion analysis values and only apply to grid points in the
analysis with nonzero precipitation. The EDAS assimi-
lates the adjusted hourly precipitation input and then
models the precipitation field. This modeled precipita-
tion drives the land surface physics, though the mod-
eled precipitation does not necessarily match the bias-
adjusted observations (Lin et al. 2005).

A more extensive modification to the land surface
scheme occurred on 3 May 2005 in the operational Eta
Model, now termed the North American Mesoscale
(NAM) model. Previously, the EDAS would create
precipitation during the assimilation process in regions
where the Eta Model did not forecast precipitation.
The renamed NAM Data Assimilation System (NDAS)
no longer adjusts precipitation totals in locations where
the precipitation from the NAM model is less than the
bias-adjusted observations. However, the latent heat
and moisture fields are reduced where the modeled
precipitation is greater than the bias-adjusted observa-
tions. More importantly, the NDAS drives the land sur-
face physics directly with the bias-adjusted observations
rather than with the NDAS modeled precipitation, re-
sulting in moister soil. The previous version tended to-
ward a dry bias during the assimilation because the
modeled precipitation did not exactly replicate ob-
served precipitation coverage and intensities. The new
method allows for a more robust and more accurate
precipitation assimilation that increases soil moisture.
Additionally, there is no longer an upper limit for cloud
water mixing ratios when computing optical depths,
which improves radiation absorption, and modifica-
tions to the cloud cover parameterization allow for
more fractional cloudiness (DiMego and Rogers 2005).

Simultaneous upgrades to the Noah LSM addressed
low-level temperature and humidity biases. Vegetation
and soil databases have more classes with higher spatial
resolution. A 1-km-resolution, U.S. Geological Survey

(USGS) 24-class vegetation-type database replaced the
13-class, 1° resolution Simple Biosphere (SiB) vegeta-
tion types (Sellers et al. 1986). For soil characteristics,
the 1-km resolution, 16-class State Soil Geographic Da-
tabase (STATSGO; Miller and White 1998) data
eclipsed the 1-km-resolution, nine-class Zobler soil
types (Zobler 1986). A 1° database of soil temperatures
at the lower boundary at 300-cm depth replaced an old
2.5° soil temperature database. In addition, model de-
velopers lowered the leaf area index and compensated
for the effect of the new precipitation assimilation pro-
cedures on the existing soil moisture bias by tuning the
canopy conductance and other vegetation parameters
within the Noah LSM. A lowered roughness length for
heat reduces the skin temperature, thereby lowering
the 2-m temperature forecasts and reducing the warm
bias, though this does not change latent or sensible heat
fluxes significantly. Overall, these modifications reduce
drying trends and increase the low-level moisture
(DiMego and Rogers 2005).

3. Data

The Oklahoma Mesonet is an integrated network of
automated surface observing stations, with at least one
site in each of Oklahoma’s 77 counties (Fig. 1). All
Mesonet sites report soil temperature at one or more
depths every 15 min. Infrared temperature sensors
(Fiebrich et al. 2003) record the skin temperature at 86
sites. Over 100 sites also record soil moisture every 30
min at levels of 5, 25, 60, and 75 cm below the surface.
All data fall subject to rigorous quality assurance pro-
cedures in order to produce reliable research-quality
data (Shafer et al. 2000). A complete description of the
Oklahoma Mesonet, including sensor specifications, ap-
pears in Brock et al. (1995), while Basara and Crawford
(2000) describe the soil moisture instrumentation.

a. Soil moisture measurements

Matric potential is a pressure potential arising from
the interaction of water with the colloidal matrix of soil
particles. Water molecules undergo attractive forces
due to capillary suction and surface adsorption (Mar-
shall et al. 1996, p. 34). Plants must overcome this at-
tractive force within the soil, as well as osmotic forces,
in order to maintain water transport from roots to
leaves. Values of matric potential are negative, with
larger absolute values of matric potential indicating
drier soil. Depending on whether a unit quantity of
water has volume, mass, or weight units, expressions of
matric potential may appear with a variety of units at-
tached. Potential, or more generally energy, per unit
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volume is in J m�3 or equivalent pressure units. Poten-
tial per unit mass is in J kg�1 and potential per unit
weight is in meters (Marshall et al. 1996, p. 37).

Scientists have recognized for some time that the rate
of heat dissipation in soil directly relates to the matric
potential (e.g., Shaw and Baver 1939). The Campbell
Scientific Inc. (CSI) 229-L heat dissipation matric po-
tential sensor installed at Oklahoma Mesonet sites
takes advantage of this principle. Encased within a po-
rous ceramic matrix resides a hypodermic needle that
houses a resistor as a heating element and a thermo-
couple as a temperature sensor. The instrument mea-
sures an initial soil temperature with the thermocouple,
applies a small voltage to the resistance heater for sev-
eral seconds, and again measures the resulting soil tem-
perature. The difference �T between the initial and
final temperatures depends upon the amount of water
in the surrounding soil. The instrumentation configura-
tion employed by the Oklahoma Climatological Survey
(OCS) yields an absolute temperature measurement er-
ror of approximately �1°C. However, since further soil
moisture calculations rely instead on a temperature dif-
ference, the measured �T likely contains much less er-
ror. To remove variability between sensors across the
Mesonet, �T relates to a normalized reference tem-
perature for all sensors �Tref according to

�Tref � m�T � b, �1�

where m and b are sensor-specific calibration coeffi-
cients (Basara and Crawford 2000). Data from vacuum,
pressure chamber, and tensiometer measurements of
soils (Reece 1996) yield an empirical relationship be-
tween the normalized reference temperature and ma-
tric potential given by

� � �c exp�a�Tref�, �2�

where � is the matric potential (kPa) and a and c are
calibration constants equal to 1.788°C�1 and 0.717 kPa,
respectively. Compared with both the original formu-
lation that appears in Reece (1996) and a modified ver-
sion from Basara and Crawford (2000), this relationship
is simpler and more accurate (B. G. Illston 2005, per-
sonal communication).

While matric potential provides an important mea-
sure of soil moisture for modeling water movement
within the soil and from the soil to plants, volumetric
water content provides forecast models with important
information regarding the volume of water present
within the soil as a fraction of the total soil volume.
Land surface models rely on measures of volumetric
water content to determine soil thermal conductivity
and model hydrology. A soil water retention curve de-
scribes the relationship between volumetric water con-
tent and matric potential for a given soil type (e.g.,
Clapp and Hornberger 1978; Rawls et al. 1982). Be-
cause of the large number of sensors at different depths
and different observing sites, OCS decided not to de-
termine a soil water retention curve for each sensor at
each site. Instead, an empirical relationship based on
detailed soil characteristics and bulk density measure-
ments at each observing site provides coefficients 	
(kPa�1) and n characteristic to each soil texture (Arya
and Paris 1981). This same methodology also provides
estimates of the residual water content, 
r, and the
saturated water content, 
s, both measured in units of
m3

water m�3
soil. The residual water content represents the

volumetric water content of very dry soil and the satu-
rated water content, or porosity, represents the maxi-
mum amount of water that a given soil volume can
hold. These quantities provide estimates of the soil
volumetric water content from calculated values of ma-
tric potential using

FIG. 1. Site locations for each of the 117 Oklahoma Mesonet sites providing soil data
between 1 Mar 2004 and 1 Oct 2005, including Eufaula (square) and Watonga (triangle).
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� � �r �
�s � �r

�1 � �����
100��n�1�1�n , �3�

where 
 is the volumetric water content and 
r is spe-
cifically defined as the water content for which the gra-
dient �
/�� becomes zero (van Genuchten 1980).

b. Soil temperature measurements

All Mesonet sites employ a Fenwal thermistor to
measure soil temperature at 30-s intervals at a depth of
10 cm under both bare soil and native vegetation. Re-
corded soil temperature observations represent an av-
erage of these measurements over 15 min. Approxi-
mately half of the Mesonet sites measure soil tempera-
ture at a depth of 5 cm under both bare soil and native
vegetation and at a depth of 30 cm under native veg-
etation. Brock et al. (1995) note that the shadow of the
solar panel from the Mesonet tower occasionally affects
soil temperature readings at the 5-cm depth. In addi-
tion, vegetation cover may moderate the response of
soil temperature sensors (Fiebrich and Crawford 2001).
Allowing for the inherent difficulty with consistently
maintaining a completely vegetation-free area over
thermistors buried under bare soil, and because the Eta
Model accounts for vegetation cover, all soil tempera-
tures in this study represent those measured under na-
tive vegetation.

4. Comparison with observations

Point measurements of soil temperature and mois-
ture are not as spatially representative as atmospheric
measurements, primarily due to spatial heterogeneities
in vegetation coverage and soil types (Marshall et al.
2003; Brotzge and Crawford 2003). For this reason,
some authors choose to average observations spatially
and temporally to reduce small-scale noise and enable
model validation and intercomparisons (e.g., Marshall
et al. 2003; Robock et al. 2003). One method involves
interpolating observations to a model grid, which un-
fortunately yields comparisons that are partly a func-
tion of the interpolation scheme rather than the under-
lying observations. An analysis scheme cannot account
for small spatial variations in the observations and thus
analyzed and observed values may differ considerably
(Schlatter 1975). Moreover, individual observation
points, and not areal averages, provide the raw data for
objective analysis schemes that produce gridded initial
conditions for models. It is therefore important to cor-
rectly estimate point values of soil temperature and soil
moisture in the Eta Model so that these values can
provide meaningful initial conditions for other numeri-
cal models with different grid sizes.

Gridded 40-km Eta Model analyses of soil tempera-
ture and moisture at 0000 and 1200 UTC are bilinearly
interpolated to Oklahoma Mesonet sites in a verifica-
tion approach that permits a comparison between
model grid values and point measurements. While Eta
Model soil analyses are available at the present opera-
tional grid spacing of 12 km, researchers seldom use
these analyses for initializing forecast models. Com-
parisons span the period from 1 March 2004 through 1
October 2005. This period is sufficient to characterize
the performance of the EDAS soil temperature and
moisture schemes both before and after the change
from continuously self-cycling modeled precipitation to
assimilation of precipitation observations on 3 May
2005. Accuracy measures derive from the difference
between the observed and modeled values of soil tem-
perature or soil moisture at each individual observation
site. The root-mean-squared error (RMSE) averages
the squared errors between the Eta Model analyses and
observations at each site and is a common accuracy
measure that represents a typical error magnitude for
forecast errors. The bias provides information on the
average error between Eta Model analyses and obser-
vations across Oklahoma, though it does not provide
information on typical error magnitudes and is not in
itself an accuracy measure (Wilks 2006, 279–280). The
choice to average errors from point comparisons in this
study rather than interpolate the observations to the
model grid permits a bulk characterization of the model
performance over all of Oklahoma without introducing
errors via an objective analysis scheme. This approach
is similar to other studies that compare model output
and observations (e.g., Crawford et al. 2000, 2001; San-
tanello and Carlson 2001; Robock et al. 2003).

Each soil temperature and moisture observation at
an Oklahoma Mesonet site represents a single value at
a specific location and depth. Several studies report
that soil moisture varies widely over very small hori-
zontal and vertical scales, primarily due to variations in
soil type, slope, vegetation cover, and rainfall gradients,
while many spatial patterns of soil moisture remain
stable over time (e.g., Famiglietti et al. 1999; Mohanty
and Skaggs 2001; Teuling et al. 2006). Point measure-
ments of soil temperature are likely more representa-
tive of the surrounding area compared with soil mois-
ture, though the spatial structure of temperature in the
top soil layer tends to match that of the soil moisture
field (Vauclin et al. 1982). The Eta Model analysis
grids, on the other hand, represent approximately 40-
km2 horizontal areas and depths of several centimeters
and cannot possibly capture the small-scale variability
inherent in the actual soil fields. With this in mind, the
overall soil temperature and moisture values in Eta
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Model analyses should still appropriately characterize
the bulk soil properties over the entire state of Okla-
homa, even if point measurements serve as verification
for the model.

Though comparisons between the Eta Model and ob-
servations only consider point measurements, Figs. 2
and 3 provide informative visualizations of the geo-

graphic variability of Oklahoma Mesonet 5-cm soil
temperature and moisture observations compared with
Eta Model 0–10-cm soil temperature and moisture
analyses. These examples show a representative sum-
mer day that exhibits errors similar to the average error
across Oklahoma for the entire 18-month period of
study. The Oklahoma Mesonet observations are inter-

FIG. 2. Soil temperature (K) at 0000 UTC 15 Jul 2005 from (a) Oklahoma Mesonet obser-
vations at a depth of 5 cm under sod and (b) the 0–10-cm soil layer of the 0000 UTC Eta Model
analysis.
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polated to a 3-km horizontal grid using a two-pass
Barnes analysis (Barnes 1973). The Eta Model analy-
ses, shown here interpolated to the same 3-km horizon-
tal grid, display a warm and dry bias typical of many
0000 UTC analyses. In addition, the differences in the
patterns of each field can influence the subsequent
forecast.

The Noah LSM within the EDAS contains four soil
layers representing depths of 0–10, 10–40, 40–100, and
100–200 cm, along with a constant reservoir tempera-
ture at 300 cm. The physical equations in the Noah
LSM predict the soil temperature and soil moisture at
the midpoint of each soil layer. Soil temperatures in the
0–10-cm model layer are compared with Oklahoma

FIG. 3. Soil moisture (m3 m�3) at 0000 UTC 15 Jul 2005 from (a) Oklahoma Mesonet observations
at a depth of 5 cm and (b) the 0–10-cm soil layer of the 0000 UTC Eta Model analysis.
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FIG. 4. Point calculations of daily soil temperature bias (°C) averaged over all of Oklahoma
in the 0–10-cm layer from 0000 (gray) and 1200 UTC (black) Eta Model analyses compared
with 5-cm soil temperature observations from the Oklahoma Mesonet.

FIG. 5. Daily statewide average 5-cm soil temperature observations from the Oklahoma
Mesonet (solid line) and �1 std dev (shaded area) at (a) 0000 and (b) 1200 UTC.
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FIG. 6. Point calculations of daily soil temperature bias (°C) averaged over all of Oklahoma
in the 10–40-cm layer from 0000 (gray) and 1200 UTC (black) Eta Model analyses compared
with 30-cm soil temperature observations from the Oklahoma Mesonet.

FIG. 7. Daily statewide average 30-cm soil temperature observations from the Oklahoma
Mesonet (solid line) and �1 std dev (shaded area) at (a) 0000 and (b) 1200 UTC.

376 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 9



Mesonet observations at a depth of 5 cm, and soil tem-
peratures in the 10–40-cm model layer are compared
with observations at a depth of 30 cm. This 30-cm soil
temperature observation is as close as possible to the
midpoint of the second model soil layer using existing
Oklahoma Mesonet instrumentation. For soil moisture,
the values from the Eta Model analysis in the 0–10-,
10–40-, and 40–100-cm layers are compared with obser-
vations at depths of 5, 25, and 60 cm, respectively.
Though the 75-cm soil moisture measurement is closer
to the midpoint of the third model soil layer, these
observations suffer from errors caused by installation
problems (Basara and Crawford 2000) and pass quality
assurance tests much less frequently than measure-
ments at the 60-cm depth. Moreover, the annual cycle
of statewide averaged soil moisture reveals that soil
moisture at both of these levels behaves similarly (Ill-
ston et al. 2004). The comparisons between observa-
tions and each model layer allow computation of
RMSE and bias across the entire Oklahoma Mesonet.

a. Soil temperature

There is a strong positive soil temperature bias (fore-
casts minus observations) in the 0–10-cm layer from
0000 UTC Eta Model analyses compared with observa-
tions of 5-cm soil temperatures from all Oklahoma Me-
sonet sites (Fig. 4). Twelve hours later at 1200 UTC,
there is a predominately negative bias. The conspicuous
spike representing the 1200 UTC 6 March 2005 bias is
a notable exception that depicts an analysis problem for
the Oklahoma-wide soil temperatures in the 0–10-cm
layer. Overall, the bias for this most shallow soil layer is
4.1°C (�1.0°C) and the RMSE is 5.0°C (2.4°C) for 0000
UTC (1200 UTC) Eta Model analyses. Associated skin
temperature errors of this magnitude can produce er-
rors in upward longwave radiation of over 20 W m�2

during the summer. Modeled soil temperatures at both
0000 and 1200 UTC differ substantially from the ob-
served soil temperatures across Oklahoma, and the
statewide average modeled soil temperature frequently
exceeds the envelope given by the observed statewide
average plus or minus one standard deviation (Fig. 5).
Indeed, the overall soil temperature bias for this layer
at 0000 UTC exceeds the largest daily standard devia-
tion of 3.66°C for statewide 0000 UTC soil temperature
observations during the entire period of study. Sum-
mertime 5-cm soil temperature observations generally
exhibit more variability across Oklahoma than those in
the winter, presumably due to the influence of vegeta-
tion and convective rainfall on soil temperatures at this
depth. Errors appear reduced in magnitude in the
deeper 10–40-cm soil layer, and the 0000 and 1200 UTC
soil temperature analyses differ only slightly (Fig. 6).

There is a temporally coherent pattern of errors
throughout the year such that errors of the same sign
persist for multiweek periods. This trend appears to
follow the more variable pattern of daily biases in the
upper soil layer. The modifications to the land surface
model on 3 May 2005 do not appear to affect signifi-
cantly the magnitude of subsequent soil temperature
errors. The variability of the statewide soil tempera-
tures in this layer is less than that of the upper soil layer.
While less than those in the 0–10-cm layer, these errors
still represent a substantial fraction of the total variabil-
ity in the observed statewide soil temperatures in the
10–40-cm model layer (Fig. 7).

While the physical equations predict the soil tem-
perature at the midpoint of a given soil layer, soil
temperatures in the Eta Model physically represent an
average in that layer. A more strict comparison with
observations therefore requires an integrated soil tem-
perature throughout a layer rather than point measure-
ments at a specific depth. A cubic spline interpolation
between observations of skin temperature and soil tem-

FIG. 8. Comparative measures between a control model simu-
lation and a model simulation with randomly perturbed soil tem-
peratures showing (a) root-mean-square difference and (b)
anomaly correlation for the 0–10-cm layer (black) and the 10–40-
cm layer (gray).

JUNE 2008 G O D F R E Y A N D S T E N S R U D 377



perature at depths of 5 and 10 cm, summed over 5-mm
increments, allows an estimate of the soil temperature
in the 0–10-cm layer. This integrated soil temperature
compares well with the 5-cm soil temperature observa-

tions. The average difference between the integrated
and observed temperatures is only 0.23°C with a stan-
dard deviation of 0.66°C. The daily difference between
the Oklahoma-wide 0–10-cm soil temperature bias in

FIG. 9. Point calculations of daily soil moisture bias (m3 m�3) averaged over all of Oklahoma
in the 0–10-cm layer from 0000 (gray) and 1200 UTC (black) Eta Model analyses compared
with 5-cm soil moisture observations from the Oklahoma Mesonet.

FIG. 10. Point calculations of daily soil moisture bias (m3 m�3) averaged over all of Okla-
homa in the 10–40-cm layer from 0000 (gray) and 1200 UTC (black) Eta Model analyses
compared with 25-cm soil moisture observations from the Oklahoma Mesonet.
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Eta Model analyses calculated from either direct mea-
surements at 5 cm or an integrated temperature in the
layer may reach as high as 2°C. However, the overall
error statistics for the 0–10-cm layer calculated using an
integrated soil temperature do not change substantially
compared with the direct measurements shown in Fig. 4.

Results from a three-dimensional simulation using
the fifth-generation Pennsylvania State University–
National Center for Atmospheric Research (PSU–
NCAR) Mesoscale Model (MM5, version 3.6; Dudhia
1993; Grell et al. 1995; Dudhia 2003) illustrate the im-
portance of initial soil temperature conditions. A test
compares a 48-h control forecast on a 3-km horizontal
grid over Oklahoma initialized with a 1200 UTC Eta
Model analysis on 3 May 2004 with a second forecast
with the same initial conditions except that the soil tem-
perature at each grid point in the 0–10-cm layer is per-
turbed by a uniform random number (Bratley et al.
1987, chapter 6) bounded by �2°C. For consistency
with the lower soil layers, the soil temperature in the
10–40-cm layer is perturbed by half the magnitude of
the perturbation in the top soil layer. The root-mean-
squared difference between the perturbed forecast
compared with the control forecast shows that the mag-
nitude of the difference between the perturbed soil
temperatures and those in the control forecast de-
creases over the length of the forecast period (Fig. 8a).
Because of external influences on the top soil layer,

perturbed soil temperatures in the 0–10-cm layer return
to control forecast soil temperatures more quickly over
time than temperatures in the 10–40-cm layer. An
anomaly correlation, given by

AC �

�
n�1

m

��Tp � Tc�|t�0�Tp � Tc�|t�h�

��
n�1

m

�Tp � Tc�
2|t�0�

n�1

m

�Tp � Tc�
2|t�h�1�2

,

�4�

where Tp is the perturbed soil temperature and Tc is the
control soil temperature at grid point n, summed over
m grid points for each forecast hour t over h forecast
hours, provides a measure of association between the
control and perturbed forecast fields (Wilks 2006, p.
311). Here, the sign and magnitude of the perturbation
at forecast time h are compared against the value of the
initial perturbation at each grid point. The anomaly
correlation at each forecast hour for both soil levels
reveals that the sign of each perturbation strongly per-
sists throughout the forecast period (Fig. 8b). Pertur-
bations persist because horizontal diffusion between
adjacent gridded soil temperature values is negligible
compared with horizontal diffusion in the atmosphere.
This test indicates that inaccurate soil temperatures,
such as the biased soil temperatures in Eta Model
analyses, provided as initial conditions from gridded

FIG. 11. Point calculations of daily soil moisture bias (m3 m�3) averaged over all of Okla-
homa in the 40–100-cm layer from 0000 (gray) and 1200 UTC (black) Eta Model analyses
compared with 60-cm soil moisture observations from the Oklahoma Mesonet.
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analysis fields may adversely affect the resulting short-
term model forecasts of near-surface variables.

b. Soil moisture

There is a pervasive and persistent dry bias in both
the 0000 and 1200 UTC Eta Model soil moisture analy-
ses. For each day, the Oklahoma-wide average soil
moisture in the 0–10-cm model layer of the Eta Model
analyses is generally drier than the observations at 5 cm
(Fig. 9). In the 10–40-cm layer, the soil moisture bias
slightly exceeds zero for only a single 0000 UTC Eta
Model analysis and in the 40–100-cm layer, the soil
moisture bias never becomes positive over the period of
study (Figs. 10 and 11). Overall, the bias for each soil
layer is �0.03, �0.05, and �0.09 m3 m�3 and the RMSE

is 0.06, 0.08, and 0.11 m3 m�3 for the 0–10-, 10–40-, and
40–100-cm Eta Model layers, respectively. In the 40–
100-cm Eta Model layer, the daily average soil moisture
error across all of Oklahoma reaches as large as 35% of
the typical range of soil moisture when compared with
observations at a depth of 60 cm.

There is notable improvement in the analyzed soil
moisture fields after the change from self-cycling pre-
cipitation to observed precipitation assimilation on 3
May 2005. While this change reduced the magnitude of
the errors, and evidences itself as a large discontinuity
in the bias time series of Figs. 10 and 11, a strong dry
bias persists in the soil moisture field.

A portion of this bias may result from the specifica-
tion of soil texture in the Noah LSM. Soil texture pro-

FIG. 12. USDA soil texture triangle displaying measured particle-size fractions for each Oklahoma
Mesonet site at multiple depths (dots) for modeled (a) sand (S), (b) silty loam (SL), (c) sandy loam (SL),
(d) loam (L), (e) silty clay loam (SiCL), (f) clay loam (CL), and (g) clay (C). The radius of the circle
(black) centered on each modeled soil texture class is equal to the mean three-dimensional Euclidean
distance between the observed and modeled soil characteristics, with the shaded area representing �1
std dev about the mean. The number of correctly modeled points and the total number of points assigned
to each soil texture are separated by a solidus above and to the left of each triangle.
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vides critical information on the field capacity and wilt-
ing point of the soil, and therefore restricts the range of
volumetric water content that a particular soil type can
achieve. A careful examination of soil moisture errors
in Eta Model analyses requires a comparison between
modeled and observed soil textures at Oklahoma Me-
sonet sites. For such a comparison, the following
method assigns particle-size fractions to the midpoint of
each Noah LSM soil texture class following Miller and
White (1998). Where measurements exist, the observed
sand, silt, and clay fractions at four different depths at
each Oklahoma Mesonet site are plotted on the stan-
dard U.S. Department of Agriculture (USDA) soil tex-
ture triangle for each modeled soil texture at the closest
model grid point to the Mesonet sites (Fig. 12). The
three-dimensional Euclidean distance between the ob-
served and modeled sand, silt, and clay fractions pro-
vides a measure of accuracy between the modeled and
observed soil textures. The average distance and plus or
minus one standard deviation about this average is

shown by the circles centered on the midpoint of the
modeled soil texture in each USDA soil texture tri-
angle. For all seven modeled soil texture classes, the
Noah LSM correctly classifies less than one-third of the
observed soil textures, with the average distance on the
soil texture triangle often falling outside the intended
classification, though the observed particle-size frac-
tions provide a rather small sample size for most mod-
eled texture classes.

5. Discussion

Systematic biases clearly exist in both soil tempera-
ture and soil moisture. Consistent with the results of
Marshall et al. (2003), soil temperatures in the most
shallow soil layer tend to be too warm at 0000 UTC and
too cool at 1200 UTC. Positive soil temperature errors
in 0000 UTC Eta Model analyses likely stem in part
from the documented excess of solar radiation during
the daytime (Zamora et al. 2005), while the generally

FIG. 12. (Continued)
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negative soil temperature biases in 1200 UTC Eta
Model analyses result from underestimated downward
longwave radiative fluxes during nighttime hours (Sten-
srud et al. 2006). The modifications to the land surface
physics on 3 May 2005 did not mitigate these errors; soil
temperatures in the top soil layer remain too high in the
0000 UTC Eta Model analyses and dry soil moisture
biases continue in each of the top three soil layers. Tests
indicate that these systematic biases in both soil tem-
perature and moisture do not appear to be strongly
dependent upon particular soil texture or vegetation
types defined in Eta Model grid cells.

At the Eufaula Oklahoma Mesonet site, the EDAS
soil moisture errors in the top two model layers result
from both an inappropriate response to rainfall events
and accelerated desiccation of the soil compared with
observations, particularly in the 10–40-cm layer (Fig.
13). The response to precipitation in the 40–100-cm
layer appears limited except after several consecutive
days of heavy precipitation. The new precipitation as-
similation procedure implemented on 3 May 2005
somewhat improved soil moisture estimates at some
Mesonet sites, though systematic dry biases remain in
the Eta Model analyses.

FIG. 13. Observed soil moisture at 1200 UTC at Eufaula (gray) at depths of (a) 5, (b) 25, and (c) 60
cm compared with 1200 UTC Eta Model analyses (black) in the 0–10-, 10–40-, and 40–100-cm soil layers,
respectively, and observed daily (0000–0000 UTC) precipitation totals (bars).
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Soil texture classification problems no doubt contrib-
ute to the soil moisture errors in Eta Model analyses,
but if soil textures were the sole cause of soil moisture
errors in Eta Model analyses, one would expect both
positive and negative biases. Since the model is over-
whelmingly dry in its depiction of soil moisture, these
errors are likely the fault of some other mechanism.
Regardless of the accuracy of the modeled soil textures,
if the modeled volumetric water content is incorrect,
then the model cannot possibly provide accurate near-
surface forecasts. Moreover, soil characteristics vary on
a scale of a few meters or less, such that particle-size
fractions determined from soil cores several meters
away from those used for this comparison could yield
very different soil texture classifications. Until opera-
tional model grid resolutions shrink to the scale of
meters, and soil texture data also become available at
this resolution, model forecasts will continue to rely
upon imperfect soil texture information.

Since soil temperature depends strongly on soil mois-
ture, an exploration of the influence of soil heat capac-
ity can help to address the effect of an apparent dry bias
on modeled soil temperatures. Soil heat capacity is a
function of soil moisture and directly affects the diag-
nosis of soil temperature. Underestimates of soil mois-
ture such as those in Eta Model analyses could there-
fore result in poorly estimated soil temperatures. A
simple, one-layer slab soil model driven by Oklahoma
Mesonet observations allows approximate calculations
of the influence of errors in soil moisture alone on soil
temperature. Following the formulation in the Noah
LSM (Chen and Dudhia 2001), the composite soil volu-
metric heat capacity employed in the slab model is

Cg � �Cwater � �1 � �s�Csoil � ��s � ��Cair, �5�

where � is the soil volumetric water content, Cwater �
4.2 � 106 J m�3 K�1, Csoil � 1.26 � 106 J m�3 K�1, and
Cair � 1004 J m�3 K�1 are the volumetric heat capaci-
ties of water, soil, and air, respectively, and �s is the soil
porosity. The soil porosity depends upon the soil tex-
ture (Cosby et al. 1984) determined from soil cores at
each observation site. The slab model predicts the soil
temperature T at a depth of 5 cm using a traditional
diffusion equation for soil temperature,

Cgds

�T

�t
� QGS

, �6�

where QGS
is the storage ground heat flux and ds � 10

cm is the depth of the slab. Since the observation fre-
quency for soil temperature is 15 min and that for soil
moisture is 30 min, the slab model linearly interpolates
the soil moisture observations to obtain a complete
time series of data at 15-min intervals. Unfortunately,

the Oklahoma Mesonet sensors do not directly measure
the storage ground heat flux, and instead obtain the
best possible estimate based on soil temperature, soil
moisture, and average soil properties at selected Meso-
net sites. When using Eq. (6) with estimated QGS

, the
observed volumetric water content value, and an initial
soil temperature equal to the observed value at 5 cm,
the slab model produces soil temperatures that slowly
diverge from observations. For this reason, an im-
proved estimate of QGS

is calculated by determining the
value of QGS

needed to produce the observed 5-cm soil
temperature, given the observed volumetric water con-
tent.

The sensitivity of the slab model to errors in the volu-
metric water content is explored using the improved
estimates of QGS

for each 15-min period. Ground tem-
peratures from model simulations produced for equal
positive and negative volumetric water content biases
are compared with observations. While this simple
model does not account for the influence of differing
soil moisture on the storage ground heat flux or the

FIG. 14. Slab soil model temperatures (°C) initialized by (a)
0000 and (b) 1200 UTC 5-cm soil temperature observations at
Watonga on 20 Jul 2004. Soil moisture errors of �0.1 (dotted) and
�0.1 m3 m�3 (dashed) yield temperatures that differ from ob-
served soil temperatures (solid).
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surface energy balance, it represents an idealized ap-
proach to determine the effect of soil moisture errors
on soil temperature forecasts.

Given observations and soil characteristics at the
Watonga Oklahoma Mesonet site for 72 h beginning at
both 0000 and 1200 UTC 20 July 2004, this simple one-
layer slab soil model estimates the 5-cm soil tempera-
tures that would develop if the observed 5-cm soil mois-
ture error were equal to �0.1 m3 m�3 (Fig. 14), or twice
the soil moisture error seen in the Eta Model analyses.
Different initialization times show the effect of a soil
moisture bias on each part of the diurnal cycle. Results
reveal that negative soil moisture biases alone may ac-
count for more than 1.6°C increases (decreases) in
maximum (minimum) daily soil temperatures. Positive
soil moisture biases account for a more modest reduc-
tion of about 0.9°C in the amplitude of the diurnal soil
temperature cycle. While underestimates of soil mois-
ture may contribute to the sign of the soil temperature
errors shown in Fig. 4, soil moisture alone apparently
cannot account for the magnitude of the soil tempera-
ture errors in Eta Model analyses.

6. Conclusions

This investigation compares soil temperature and soil
moisture estimates from 40-km Eta Model analyses at
several different model levels with observations from
the Oklahoma Mesonet. In contrast to the findings of
Robock et al. (2003), strong biases in soil temperature
exist, as well as a severe underestimation of soil mois-
ture at all depths. Soil temperatures in the top soil layer
are often too warm at 0000 UTC and too cool at 1200
UTC. As previous studies have shown, soil temperature
and soil moisture estimates strongly impact forecasts by
numerical weather prediction models that implement
sophisticated land surface parameterizations. Problems
with soil fields in Eta Model analyses, which provide
initial conditions for a variety of research and opera-
tional modeling applications, may negatively impact the
resulting model forecasts. These existing biases suggest
the strong need for an extensive network of soil obser-
vations, in addition to atmospheric surface observa-
tions, and the necessity for assimilating those observa-
tions into land surface initializations. Further research
into the reasons for the inappropriate response of the
Noah LSM to rainfall events may lead to significant
improvements in model performance.
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