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Dynamic Performance Characteristics
 Recall:
 Static performance characteristics define sensor 

performance when the input and output are 
steady.  We described steady state errors.

 Realistically, the sensor input changes all the 
time

 We must characterize the changing output of 
a sensor in response to a changing input to 
determine:
 How fast the instrument responds (an important 

selection criterion)
 Define the dynamic errors

ATMS 320

Rapid Change in Input
 Consider an instantaneous change in the sensor 

input.  What will happen with the output?

Which curve represents the 
output of the sensor?

Mechanical System – Cup Anemometer
 Suppose the wind starts to blow.  There is a finite amount of 

time required for the anemometer to come up to speed

 Similarly, the spinning cups carry kinetic energy which the 
anemometer must dissipate into the wind stream.

 Applying Newton’s second law, we can write:
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Thermal System – Thermometer
 We can describe heating or cooling using

 Where
 c is the specific heat capacity of the sensor (J kg-1 K-1)
 m is the mass of the sensor (kg) D2

Thermal System – Thermometer
 A thermometer is heated to a new temperature by conduction, so…

 Where
 U is the heat transfer coefficient (J K-1 s-1 m-2)
 A is the area of the sensor (m2)
 T is the temperature measured by the sensor (K)
 Tair is the actual air temperature
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Thermal System – Thermometer
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Thermal System – Thermometer

D5

 The constant has units of time, so we call it 
the time constant, 
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General form for a linear, first-order 
ordinary differential equation

  = time constant

 Let x be some meteorological value
 x = output value (this is what we want to solve for)

 xi = input value

ixx
dt

dx
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Assumptions

 When determining dynamic performance 
characteristics, we make some assumptions:
 Assume that the system has been calibrated to 

remove any bias

 Assume that there are no static errors

 Assume that if xi = constant, then as t  , x  xi

ixx
dt

dx
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Time constant

 What exactly does the time constant tell us?

 As  increases, the sensor takes a longer time to 
respond

 A smaller time constant indicates a sensor that 
responds faster to rapidly changing inputs


xx

dt

dx i 
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A special case of the equation for a thermometer

 If the sensor input is the same as the sensor output 
(i.e., the static case), then Tair = T, so

 No temperature difference
 No energy flow
 No change in temperature

TT
dt

dT
air 

0
dt

dT

This is a static solution
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Dynamic Solution

TT
dt

dT
air 

What happens if Tair  T?

 In this case,

 There are two parts to the solution of this 
differential equation…

0for  0  
dt

dT
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Dynamic Solution  – Two Parts
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Dynamic Solution  – Two Parts

 Transient solution
 T(t)  constant

 Also called the homogeneous solution

 Steady-state solution
 T(t) = constant

 Also called the particular solution

)()()( txtxtx ST 

Transient Solution Steady State Solution
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Yup, all you do is set xi = 0.  Then solve the equation!

Dynamic Solution Procedure

1) First solve for the transient (or 
homogeneous) solution.  This satisfies this 
equation:

2) Solve for the steady-state (particular) 
solution

3) Apply any initial conditions to solve for the 
coefficient

0 x
dt

dx

Let’s do an example…
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Wrapping up the example…

 The system requires roughly 5 for us to 
consider the output as steady state!

 The larger the time constant, the longer it 
takes for the system to reach 63.2% of the 
final value

 The larger the time constant, the slower the 
instrument
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Time constant
 Given a step change in input, the time constant () is 

the time it takes for the output to reach 63.2% of the 
final value

Example: Hold a mercury thermometer over a flame.  
It’s cool, but don’t try it if you’re older than 14. 

seconds2

seconds6

Ratio = x(t)/xc
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Falling step function
 A step function can be either positive (rising) or 

negative (falling)

Example: Quickly move a thermometer from room 
temperature into an ice bath 

Initial Value

Final Value

What is the 
time constant?

 = 4 seconds

63.2% of the 
final value

ATMS 320

Step Functions

 Ideal step functions don’t exist in reality!

 All meteorological changes require a finite 
amount of time to reach a final value

 Changes can be fast (but how do we define 
“fast”?)

 A step function is a useful approximation if:

Time for step change << Time constant
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Linear Ramp Function

 A linear ramp function represents an input 
that increases or decreases linearly over time

xi(t) = at

a = constant
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Linear Ramp Function

 Recall the equation for a first-order, linear system:

 For a ramp function, the input xi is at, where a is a 
constant

 The equation becomes:

ixx
dt

dx


atx
dt

dx


ATMS 320

Linear Ramp Function

 Solve for the transient (homogeneous) solution by 
setting the right side equal to zero:

 We did this before!
 The transient solution is:

0 x
dt

dx

/
1)( t

T eCtx 
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Now for the hand-waving part…

 Solve for the particular solution by:
 Assuming a linear solution (well, the input function 

is linear, so it’s worth a shot…)

 Test the assumed solution by plugging it back into 
the original governing equation

 Let’s try this:

 Now solve for both constants http://www.magicity.com

tkktxS 10)( 

ATMS 320

Linear Ramp Function
Steady-state solution
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Linear Ramp Function
General solution
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Linear Ramp Function
Example

 Consider the case where x0 = 0.  Then,

  /1)( teaattx 

attxi )(

  tatx )(

As t gets very large,
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Linear Ramp Function
Example

 The output never catches up with the input!

 Two errors appear:
 Dynamic error

 Dynamic lag
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Dynamic Error
 Dynamic error is the difference between the 

ramp input and the response output at time t

 Let’s consider the dynamic error both initially 
and at steady state
 Initial dynamic error

 For t  0: d = 0

 Steady-state dynamic error
 For t  : d = –a

  /1)()( t
id eatxtx 

sensor
output

sensor
input
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Dynamic Lag
 Dynamic lag is the time required for the 

steady-state output to catch up to the input

Δt

Dynamic Lag

 Consider the steady-state dynamic lag for a 
ramp function:
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Sinusoidal Function
 In meteorology, we rarely see either step or 

ramp function inputs

 As you saw (or will see) in dynamics (ATMS 
310), the motion of the atmosphere often 
resembles waves

 A simple wave is a sine wave

 Let’s consider a sinusoidal input and solve for 
the steady-state output (we already found the 
transient response)
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Sinusoidal Function
 Describe the sinusoidal input by:

 Ai is the amplitude (assumed constant)

  is the oscillation frequency ( = 2f = 2/T); also 
constant

 Uh-oh…we have to assume a solution again

)sin()( tAtx ii 

http://www.magicity.com

Sinusoidal Function
Finding the steady-state solution
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Sinusoidal Function
Finding the steady-state solution

The steady-state response has the same frequency, but a 
different amplitude and phase, compared with the input.
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Amplitude Ratio
 Look at the ratio of the output amplitude to the input 

amplitude:

 A graph of this ratio shows that:
 For low frequencies, the output amplitude is about the 

same as the input.  Hence, these frequencies are passed 
through the system.

 For high frequencies, the output amplitude is small 
compared with the input.  Hence, these frequencies are not
passed through the system

 21
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This is called a LOW-PASS FILTER
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Amplitude Ratio

Passes Low
Frequencies

Blocks High
Frequencies
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Amplitude Ratio
 For low frequencies, we pass nearly all amplitudes 

with little attenuation.  This means that the sensor 
responds quickly to a slowly varying input.  There 
is very little dynamic error.

 For high frequencies, we attenuate nearly all 
amplitudes.  This means that the sensor responds 
slowly or not at all to a rapidly varying input.  
There is a large dynamic error.

 For a fast sensor:
  << T  << 1
 almost no errors

 For a slow sensor:
  >> T  >> 1
 large errors – perhaps no sensor output at all!
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Superposition of Sinusoids

 What happens to the steady-state solution if 
there is more than one input frequency?

 Superposition principle:
 For a linear system, if xA(t) is a solution when xiA(t) 

is the input, and xB(t) is a solution when xiB(t) is 
the input, then xA(t)+xB(t) is a solution when 
xiA(t)+xiB(t) is the input

)sin()sin()( 22110 tAtAAtxi  

Superposition of Sinusoids

 For an input:

 The solution is

)sin()sin()( 22110 tAtAAtx iii  
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