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Dynamic Performance Characteristics
 Recall:
 Static performance characteristics define sensor 

performance when the input and output are 
steady.  We described steady state errors.

 Realistically, the sensor input changes all the 
time

 We must characterize the changing output of 
a sensor in response to a changing input to 
determine:
 How fast the instrument responds (an important 

selection criterion)
 Define the dynamic errors
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Rapid Change in Input
 Consider an instantaneous change in the sensor 

input.  What will happen with the output?

Which curve represents the 
output of the sensor?

Mechanical System – Cup Anemometer
 Suppose the wind starts to blow.  There is a finite amount of 

time required for the anemometer to come up to speed

 Similarly, the spinning cups carry kinetic energy which the 
anemometer must dissipate into the wind stream.

 Applying Newton’s second law, we can write:
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Thermal System – Thermometer
 We can describe heating or cooling using

 Where
 c is the specific heat capacity of the sensor (J kg-1 K-1)
 m is the mass of the sensor (kg) D2

Thermal System – Thermometer
 A thermometer is heated to a new temperature by conduction, so…

 Where
 U is the heat transfer coefficient (J K-1 s-1 m-2)
 A is the area of the sensor (m2)
 T is the temperature measured by the sensor (K)
 Tair is the actual air temperature
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Thermal System – Thermometer
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Thermal System – Thermometer
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 The constant has units of time, so we call it 
the time constant, 

ATMS 320

General form for a linear, first-order 
ordinary differential equation

  = time constant

 Let x be some meteorological value
 x = output value (this is what we want to solve for)

 xi = input value

ixx
dt

dx

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Assumptions

 When determining dynamic performance 
characteristics, we make some assumptions:
 Assume that the system has been calibrated to 

remove any bias

 Assume that there are no static errors

 Assume that if xi = constant, then as t  , x  xi

ixx
dt

dx

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Time constant

 What exactly does the time constant tell us?

 As  increases, the sensor takes a longer time to 
respond

 A smaller time constant indicates a sensor that 
responds faster to rapidly changing inputs


xx

dt

dx i 
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A special case of the equation for a thermometer

 If the sensor input is the same as the sensor output 
(i.e., the static case), then Tair = T, so

 No temperature difference
 No energy flow
 No change in temperature

TT
dt

dT
air 

0
dt

dT

This is a static solution
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Dynamic Solution

TT
dt

dT
air 

What happens if Tair  T?

 In this case,

 There are two parts to the solution of this 
differential equation…

0for  0  
dt

dT
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Dynamic Solution  – Two Parts
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Dynamic Solution  – Two Parts

 Transient solution
 T(t)  constant

 Also called the homogeneous solution

 Steady-state solution
 T(t) = constant

 Also called the particular solution

)()()( txtxtx ST 

Transient Solution Steady State Solution
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Yup, all you do is set xi = 0.  Then solve the equation!

Dynamic Solution Procedure

1) First solve for the transient (or 
homogeneous) solution.  This satisfies this 
equation:

2) Solve for the steady-state (particular) 
solution

3) Apply any initial conditions to solve for the 
coefficient

0 x
dt

dx

Let’s do an example…
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Wrapping up the example…

 The system requires roughly 5 for us to 
consider the output as steady state!

 The larger the time constant, the longer it 
takes for the system to reach 63.2% of the 
final value

 The larger the time constant, the slower the 
instrument
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Time constant
 Given a step change in input, the time constant () is 

the time it takes for the output to reach 63.2% of the 
final value

Example: Hold a mercury thermometer over a flame.  
It’s cool, but don’t try it if you’re older than 14. 

seconds2

seconds6

Ratio = x(t)/xc
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Falling step function
 A step function can be either positive (rising) or 

negative (falling)

Example: Quickly move a thermometer from room 
temperature into an ice bath 

Initial Value

Final Value

What is the 
time constant?

 = 4 seconds

63.2% of the 
final value
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Step Functions

 Ideal step functions don’t exist in reality!

 All meteorological changes require a finite 
amount of time to reach a final value

 Changes can be fast (but how do we define 
“fast”?)

 A step function is a useful approximation if:

Time for step change << Time constant
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Linear Ramp Function

 A linear ramp function represents an input 
that increases or decreases linearly over time

xi(t) = at

a = constant
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Linear Ramp Function

 Recall the equation for a first-order, linear system:

 For a ramp function, the input xi is at, where a is a 
constant

 The equation becomes:

ixx
dt

dx


atx
dt

dx

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Linear Ramp Function

 Solve for the transient (homogeneous) solution by 
setting the right side equal to zero:

 We did this before!
 The transient solution is:

0 x
dt

dx

/
1)( t

T eCtx 
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Now for the hand-waving part…

 Solve for the particular solution by:
 Assuming a linear solution (well, the input function 

is linear, so it’s worth a shot…)

 Test the assumed solution by plugging it back into 
the original governing equation

 Let’s try this:

 Now solve for both constants http://www.magicity.com

tkktxS 10)( 
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Linear Ramp Function
Steady-state solution
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Linear Ramp Function
General solution
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Linear Ramp Function
Example

 Consider the case where x0 = 0.  Then,

  /1)( teaattx 

attxi )(

  tatx )(

As t gets very large,
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Linear Ramp Function
Example

 The output never catches up with the input!

 Two errors appear:
 Dynamic error

 Dynamic lag
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Dynamic Error
 Dynamic error is the difference between the 

ramp input and the response output at time t

 Let’s consider the dynamic error both initially 
and at steady state
 Initial dynamic error

 For t  0: d = 0

 Steady-state dynamic error
 For t  : d = –a

  /1)()( t
id eatxtx 

sensor
output

sensor
input
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Dynamic Lag
 Dynamic lag is the time required for the 

steady-state output to catch up to the input

Δt

Dynamic Lag

 Consider the steady-state dynamic lag for a 
ramp function:
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Sinusoidal Function
 In meteorology, we rarely see either step or 

ramp function inputs

 As you saw (or will see) in dynamics (ATMS 
310), the motion of the atmosphere often 
resembles waves

 A simple wave is a sine wave

 Let’s consider a sinusoidal input and solve for 
the steady-state output (we already found the 
transient response)



7

ATMS 320

Sinusoidal Function
 Describe the sinusoidal input by:

 Ai is the amplitude (assumed constant)

  is the oscillation frequency ( = 2f = 2/T); also 
constant

 Uh-oh…we have to assume a solution again

)sin()( tAtx ii 

http://www.magicity.com

Sinusoidal Function
Finding the steady-state solution
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Sinusoidal Function
Finding the steady-state solution

The steady-state response has the same frequency, but a 
different amplitude and phase, compared with the input.
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Amplitude Ratio
 Look at the ratio of the output amplitude to the input 

amplitude:

 A graph of this ratio shows that:
 For low frequencies, the output amplitude is about the 

same as the input.  Hence, these frequencies are passed 
through the system.

 For high frequencies, the output amplitude is small 
compared with the input.  Hence, these frequencies are not
passed through the system

 21

1




iA

A

This is called a LOW-PASS FILTER
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Amplitude Ratio

Passes Low
Frequencies

Blocks High
Frequencies

ATMS 320

Amplitude Ratio
 For low frequencies, we pass nearly all amplitudes 

with little attenuation.  This means that the sensor 
responds quickly to a slowly varying input.  There 
is very little dynamic error.

 For high frequencies, we attenuate nearly all 
amplitudes.  This means that the sensor responds 
slowly or not at all to a rapidly varying input.  
There is a large dynamic error.

 For a fast sensor:
  << T  << 1
 almost no errors

 For a slow sensor:
  >> T  >> 1
 large errors – perhaps no sensor output at all!
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Superposition of Sinusoids

 What happens to the steady-state solution if 
there is more than one input frequency?

 Superposition principle:
 For a linear system, if xA(t) is a solution when xiA(t) 

is the input, and xB(t) is a solution when xiB(t) is 
the input, then xA(t)+xB(t) is a solution when 
xiA(t)+xiB(t) is the input

)sin()sin()( 22110 tAtAAtxi  

Superposition of Sinusoids

 For an input:

 The solution is

)sin()sin()( 22110 tAtAAtx iii  
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