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| Rapid Change in Input

= Consider an instantaneous change in the sensor
input. What will happen with the output?

Input
\ Which curve represents the
output of the sensor?

Temperature

0 Time ! I |
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‘ Thermal System — Thermometer
= We can describe heating or cooling using

s Where
o cis the specific heat capacity of the sensor (J kg'' K1)
o m is the mass of the sensor (kg) 0

| Dynamic Performance Characteristics

= Recall:

o Static performance characteristics define sensor
performance when the input and output are
steady. We described steady state errors.

= Realistically, the sensor input changes all the
time
= We must characterize the changing output of

a sensor in response to a changing input to

determine:

o How fast the instrument responds (an important
selection criterion)

o Define the dynamic errors Tﬂ
YN

Mechanical System — Cup Anemometer

= Suppose the wind starts to blow. There is a finite amount of
time required for the anemometer to come up to speed

= Similarly, the spinning cups carry kinetic energy which the
anemometer must dissipate into the wind stream.

= Applying Newton’s second law, we can write:

‘ Thermal System — Thermometer

= A thermometer is heated to a new temperature by conduction, so...

= Where
o Uis the heat transfer coefficient (J K- s'' m2)
a Alis the area of the sensor (m?)
a Tis the temperature measured by the sensor (K)
a Ty is the actual air temperature




‘ Thermal System — Thermometer

General form for a linear, first-order
ordinary differential equation

o 1 = time constant
o Let x be some meteorological value
= X = output value (this is what we want to solve for)

= X = input value
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‘ Time constant

= What exactly does the time constant tell us?

dx X —X
dt T
o As 1 increases, the sensor takes a longer time to

respond
o A smaller time constant indicates a sensor that
responds faster to rapidly changing inputs
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| Thermal System — Thermometer

= The constant has units of time, so we call it
the time constant, ©

‘ Assumptions

= When determining dynamic performance
characteristics, we make some assumptions:
o Assume that the system has been calibrated to
remove any bias
o Assume that there are no static errors
o Assume that if x; = constant, then as t — o, X - x;

dx
T—+ X=X
dt
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A special case of the equation for a thermometer

T dl = Tair
dt

= If the sensor input is the same as the sensor output
(i.e., the static case), then T, =T, so

dT
— =0
dt
o No temperature difference

o No energy flow
o No change in temperature

This is a static solution Tﬂ
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‘ Dynamic Solution

le =Tair -T
dt

What happens if T,

#=T17?

dT
= In this case, s #0forz#0

= There are two parts to the solution of this
differential equation...
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| Dynamic Solution — Two Parts

onapes

= Transient solution ;
o T(t) = constant i
o Also called the homogeneous solution -
= Steady-state solution
o T(t) = constant
o Also called the particular solution

X(0) =X (1) + X5 ()

-

Transient Solution Steady State Solution Tﬂ
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Let’s do an example...

| Dynamic Solution — Two Parts

Input \
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S Output
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| Dynamic Solution Procedure

1) First solve for the transient (or
homogeneous) solution. This satisfies this
equation:

r%+X=O
dt

2) Solve for the steady-state (particular)
solution

3) Apply any initial conditions to solve for the

coefficient




‘ Wrapping up the example...

= The system requires roughly 5t for us to
consider the output as steady state!

= The larger the time constant, the longer it
takes for the system to reach 63.2% of the
final value

= The larger the time constant, the slower the

instrument
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‘ Falling step function

= A step function can be either positive (rising) or
negative (falling)

Step Input
Initial Value — 1.0 Negative
08 What is the
08 time constant?
07
50.& T =4 seconds

05
632%ofthe &g,

final value 003 ___________ N
I

02

|
o1 !
i | e R A I N I S L S K
Final Value 00‘J B i 8
Time (Sec.)

Example: Quickly move a thermometer from room
temperature into an ice bath
ATMS 320

‘ Time constant

= Given a step change in input, the time constant (t) is
the time it takes for the output to reach 63.2% of the

final value
Step Input
With Normalized Ampiitude 7 = 2seconds

101
i

_— 7= 6seconds

o 2 4

8 10 12

&
Time (Sec.)

Example: Hold a mercury thermometer over a flame.
It's cool, but don't try it if you're older than 14.
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| Step Functions

= |deal step functions don’t exist in reality!

= All meteorological changes require a finite
amount of time to reach a final value

= Changes can be fast (but how do we define
“fast”?)

= A step function is a useful approximation if:

Time for step change << Time constant
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Linear Ramp Function

x(t) = at
a = constant

1

= A linear ramp function represents an input
that increases or decreases linearly over time
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Linear Ramp Function

= Solve for the transient (homogeneous) solution by
setting the right side equal to zero:

T—+Xx=0

= We did this before!
= The transient solution is:

X (t)=Ce""
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Linear Ramp Function
Steady-state solution
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Linear Ramp Function

= Recall the equation for a first-order, linear system:

dx
T—+ X=X
dt

= For a ramp function, the input x; is at, where ais a
constant

= The equation becomes:

dx
rT—+X=at
d
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| Now for the hand-waving part...

= Solve for the particular solution by:

o Assuming a linear solution (well, the input function
is linear, so it's worth a shot...)

o Test the assumed solution by plugging it back into
the original governing equation

= Let’s try this: "
X (1) =k, +kit ‘
o Now solve for both constants ]

Linear Ramp Function
General solution
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Linear Ramp Function
Example
= Consider the case where x, = 0. Then,

X(t)=at - ar(l - e’“’)

As t gets very large,
g

& X (t)=at

o x(t) =alt-7)
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‘ Dynamic Error

= Dynamic error is the difference between the
ramp input and the response output at time t

gy =X -x )= —ar(l —e‘”)
—
ot et

= Let's consider the dynamic error both initially
and at steady state

o Initial dynamic error
s Fort—>0:g4=0
o Steady-state dynamic error

= Fort—wigg=-at 1
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‘ Dynamic Lag

= Consider the steady-state dynamic lag for a
ramp function:

Linear Ramp Function
Example

= The output never catches up with the input!

= Two errors appear:
o Dynamic error
o Dynamic lag

] 4 ] B 10 12 14 16 18 20
Time {Sec.)
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‘ Dynamic Lag
= Dynamic lag is the time required for the
steady-state output to catch up to the input
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‘ Sinusoidal Function
= In meteorology, we rarely see either step or
ramp function inputs

= As you saw (or will see) in dynamics (ATMS
310), the motion of the atmosphere often
resembles waves

= A simple wave is a sine wave

= Let’s consider a sinusoidal input and solve for
the steady-state output (we %reyady found the

transient response)




‘ Sinusoidal Function

= Describe the sinusoidal input by:
X; (t) = A sin(wt)
o A is the amplitude (assumed constant)

o o is the oscillation frequency (o = 2xf = 27/T); also
constant

= Uh-oh...we have to assume a solution again
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‘ Sinusoidal Function

Finding the steady-state solution
101 Input

[} 10 20 30 40 50
Time (Sec.)

The steady-state response has the same frequency, but a
different amplitude and phase, compared with the input. m
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‘ Amplitude Ratio
.

Blocks High
Frequencies 110

Phase g 1304
=3

01f '-50%

Passes Low o~
Frequencies

Amplitude Ratio

’ Sinusoidal Function
Finding the steady-state solution

‘ Amplitude Ratio

= Look at the ratio of the output amplitude to the input
amplitude: A 1

= —
A 1+ (ra))
= A graph of this ratio shows that:

o For low frequencies, the output amplitude is about the
same as the input. Hence, these frequencies are passed
through the system.

o For high frequencies, the output amplitude is small
compared with the input. Hence, these frequencies are not
passed through the system

This is called a LOW-PASS FILTER Tﬂ

0.01 5 -90

Tw 1
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‘ Amplitude Ratio

= For low frequencies, we pass nearly all amplitudes
with little attenuation. This means that the sensor
responds quickly to a slowly varying input. There
is very little dynamic error.

= For high frequencies, we attenuate nearly all

amplitudes. This means that the sensor responds

slowly or not at all to a rapidly varying input.

There is a large dynamic error.

For a fast sensor:

01<<T 1w<<1

o almost no errors

= For a slow sensor:
01>T t0>>1

o large errors — perhaps no sensor output at all! m
ATMS 320




| Superposition of Sinusoids

= What happens to the steady-state solution if
there is more than one input frequency?

X (1) = A, + A sin(at) + A, sin(w,t)

= Superposition principle:

o For a linear system, if x,(t) is a solution when x(t)
is the input, and xg(t) is a solution when x;(t) is
the input, then x,(t)+xg(t) is a solution when
Xia(t)+xg(t) is the input
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| Superposition of Sinusoids

= For an input:
X (1) = A + A sin(ot) + A, sin(o,t)

= The solution is




