

Anemometry

- Orthogonal wind components
 u-component
 - Positive to the east (i.e., westerly winds)
 - v-component
 - Positive to the north (i.e., southerly winds)
 - w-component
 - Positive upward
- Another way to report the wind:
 - Speed and direction
 - Direction is measured in degrees clockwise from north
 - Elevation angle

Wind Conventions and Characteristics

- Standard units
 - meters per second (m s⁻¹)
 - nautical miles per hour (knots; kts)
- Flow in the atmospheric boundary layer is turbulent → wind vector varies
- We describe the mean wind over a time period
 - WMO specifies 10 minutes
 - Gusts (deviations from the mean, e.g., 1-min gusts)
 - Turbulence intensity $(\sqrt[\sigma_v]{V})$

Sensor Output for Cup or Propeller Anemometers

- Raw output
 - Mechanical rotation rate of the cup wheel and supporting shaft
- Shaft is coupled to an electrical transducer that produces an electrical output signal
 - DC voltage signal proportional to shaft rotation rate
 - AC voltage signal with frequency proportional to shaft rotation rate
- Another option: Optical transducer
 - Measures pulses when the rotating wheel interrupts a beam of light

Over-Speeding: A Dynamic Error Dynamic Performance For a given anemometer, we cannot specify τ , since it varies with wind speed! • The distance constant, λ , is the dynamic specification for anemometers (not τ) To minimize the distance constant, reduce m_c and increase A Is it always practical to do this? The length of the radius arm is irrelevant

Hot-Wire and Hot-Film Anemometers

- Use heat dissipation:
 - Wind flow cools a heated wire
 - The wire is heated to a particular temperature through current flow
- The temperature is held constant by adjusting the current to balance the heat loss
- King's law describes the required current:

$$I^2 = A + B\sqrt{V}$$

• A and B are empirical constants

Sonic Anemometer

- Measures the time required to transmit an acoustic signal across a fixed path
- Determines wind velocity along path
- We can also measure the virtual temperature!

