

Some definitions

- Liquid water content (LWC)
 Amount of liquid water per unit volume of air (g cm⁻³)
- Droplet concentration
- Total <u>number of water droplets</u> per unit volume of air (# cm⁻³)
- Droplet spectrum
 - Size distribution of cloud droplets
 Expressed as the number of droplets per cm³ in various droplet size intervals

Marine and continental cumulus cloud LWCs are about the same Higher droplet concentrations in continental cumulus must result in a *smaller* average droplet size →Differences in the microstructure of marine

Effects of cloud condensation nuclei

→Differences in the microstructure of marine and continental clouds have important consequences for the development of precipitation in warm marine and continental cumulus clouds.

Two ways to make big drops:

- In warm clouds, droplets can grow by
 - Condensation in a supersaturated environment
 - Collision and coalescence

Consider updrafts

- Far above cloud base (H is large), w > v₁ and the drop grows by collisions as it is carried upward in the cloud
 - $\hfill\square$ H increases as r_{H} increases
- As the drop grows, $w < v_1$ and the drop falls and grows as it falls (H decreases) eventually passing through the cloud base and reaching the ground as a raindrop...assuming it holds together

$$H = \frac{4\rho_l}{w_l} \left[\int_{r_0}^{r_{H}} \frac{w}{v_1 E} dr_1 - \int_{r_0}^{r_{H}} \frac{dr_1}{E} \right] \quad \begin{array}{c} \text{Call this} \\ \text{Equation (1)} \end{array}$$

Stochastic collision model

- More realistic than the continuous collision model
- Collisions are individual events, statistically distributed in time and space; droplets are not all experiencing continuous collisions

Stochastic collision model Provides a mechanism for developing broad droplet size spectra from fairly uniform droplet sizes produced by condensation Reveals how a small fraction of the droplets in a cloud can grow much faster than average by statistically distributed collisions