Warm Cloud Processes

Some definitions
- Liquid water content (LWC)
 - Amount of liquid water per unit volume of air (g cm$^{-3}$)
- Droplet concentration
 - Total number of water droplets per unit volume of air (# cm$^{-3}$)
- Droplet spectrum
 - Size distribution of cloud droplets
 - Expressed as the number of droplets per cm3 in various droplet size intervals

CCN observations in marine and continental clouds
- Marine cumulus clouds
 - Most samples had droplet concentrations < 100 cm$^{-3}$
- Continental cumulus clouds
 - Droplet concentrations as high as 900 cm$^{-3}$
 - Differences reflect higher concentrations of CCN in continental air

Effects of cloud condensation nuclei
- Marine and continental cumulus cloud LWCs are about the same
 - Higher droplet concentrations in continental cumulus must result in a smaller average droplet size
 - Differences in the microstructure of marine and continental clouds have important consequences for the development of precipitation in warm marine and continental cumulus clouds.

Two ways to make big drops:
- In warm clouds, droplets can grow by
 - Condensation in a supersaturated environment
 - Collision and coalescence
Growth by condensation

- For fixed supersaturation (S), droplets growing by condensation initially increase in radius very rapidly but their growth rate diminishes with time.

- Adiabatic cooling produces supersaturation for the initial formation of droplets.
- Subsequent droplets consume water at a greater rate than the water is made available, so the supersaturation decreases.
- The growth rate of activated aerosols by condensation is inversely proportional to radius: smaller droplets grow faster.
- This results in a population of relatively uniform droplet size (monodispersed).

Note: im/M O = effective number of kilometers of salt in the droplet.

Modeled CCR growth in a rising air parcel and varying supersaturation.
Growth by condensation

Comparison of predicted (solid) and observed (dashed) cloud droplet size distribution assuming growth by condensation.

Can growth by condensation alone explain how precipitation forms in warm clouds?

Growth by collision and coalescence

- Growth of droplets from the relatively small sizes achieved by condensation to the size of raindrops is achieved by **collision** and **coalescence** of droplets
 - Each droplet has a steady settling velocity as it falls under the influence of gravity through still air (**terminal fall speed**)
 - Larger droplets have a higher terminal fall speed and collide with smaller droplets

Terminal velocities of various drop sizes

Terminal velocities based on an equation (line) and measurements (circles). Measurements from Gunn and Kinzer (1949).

Growth by collision and coalescence

- y = critical distance such that the droplet just makes a grazing collision with the collector drop
- Define **collision efficiency** as

\[
E = \frac{y^2}{(r_1 + r_2)^2}
\]
Collision efficiency (E)

- For $r_1 < 20 \, \mu m$, collisions are inefficient.
- For $r_2/r_1 < 1$, droplets follow streamlines.
- For larger r_2/r_1,
 - Droplets follow straight lines.
 - For $r_2/r_1 \approx 0.6–0.9$,
 - Terminal velocities are similar.
 - Relative velocity is small.
 - For $r_2/r_1 = 1$,
 - Drops strongly interact.
 - Wake effects allow for $E > 1$.

A collision does not guarantee that the droplet will be captured (i.e., that coalescence will occur).

Droplets can rebound if air becomes trapped between them!

Growth by collision and coalescence

- Define coalescence efficiency E' as the fraction of collisions resulting in coalescence.
- E' falls off sharply as the sizes of the drops approach one another.

Coalescence efficiency E'

- Influence of electric fields
 - Enhanced by the presence of an electric field.
 - Aided if the impacting droplets carry an electric charge in excess of about 10^{-14} C.
 - Likely not important except in thunderstorms.

Growth rate due to collision-coalescence in the continuous collision model

- Define the following:
 - Collection efficiency $E_C = EE'$
 - M = mass of collector drop.
 - w_l = liquid water content (kg m$^{-3}$) of cloud droplets of radius r_2.
 - v = terminal velocity.
 - ρ_l = density of liquid water.

Rate of increase in the mass of the collector drop due to collisions.
Rate of increase in the radius of the collector drop due to collisions

Growth by collision and coalescence
- \(v_1 \) increases as \(r_1 \) increases
- \(E \) increases with increasing \(r_1 \)

\[H = \frac{4\rho_l}{w_l} \left[\int_{r_0}^{r_H} \frac{w}{v_1 E} dr_1 - \int_{r_0}^{r_0} \frac{w}{v_1 E} dr_1 \right] \]

Consider updrafts
- Far above cloud base (\(H \) is large), \(w > v_1 \), and the drop grows by collisions as it is carried upward in the cloud
- \(H \) increases as \(r_1 \) increases
- As the drop grows, \(w < v_1 \), and the drop falls and grows as it falls (\(H \) decreases) eventually passing through the cloud base and reaching the ground as a raindrop...assuming it holds together

Growth by collision and coalescence
- Application of equation 1:
 - Given a cloud with \(w_l = 1.0 \text{ g m}^{-3} \) of water (10 \(\mu \text{m} \) radius droplets) and an updraft velocity of \(w = 1.0 \text{ m s}^{-1} \)
 - Initially small collector drop grows to a radius of about 0.15 mm in about 45 minutes as it travels upward to a height of 2.2 km
 - Over the next 15 minutes, the drop radius increases to 0.75 mm as it falls back to the cloud base (rain)
 - Change liquid water content of cloud to \(w_l = 0.5 \text{ g m}^{-3} \) and an updraft velocity of 0.1 m s\(^{-1}\); Collector drop rises to only 0.5 km and takes 2 h for it to fall to the cloud base with a radius of only 0.1 mm (drizzle)

Warm clouds with strong updrafts should produce rain in a shorter time than clouds with weak updrafts, but clouds with strong updrafts must be quite deep in order for raindrops to be produced.
Growth by collision and coalescence

- Even after two droplets have coalesced, the motions set up in their combined mass may cause it to subsequently break up into several droplets.
- The resulting fragments may then grow and break up again; such a chain reaction may enhance the precipitation.

Stochastic collision model

- More realistic than the continuous collision model
- Collisions are individual events, statistically distributed in time and space; droplets are not all experiencing continuous collisions

Stochastic collision model

- Provides a mechanism for developing broad droplet size spectra from fairly uniform droplet sizes produced by condensation
- Reveals how a small fraction of the droplets in a cloud can grow much faster than average by statistically distributed collisions