Nucleation of water vapor

Definition: The onset of a phase transition, i.e., condensation of water vapor into liquid in the atmosphere

Making clouds...

- Clouds form when air becomes supersaturated with respect to liquid water or ice
- Supersaturation most commonly occurs in the atmosphere when air parcels ascend, resulting in expansion and adiabatic cooling
- Water vapor condenses onto aerosols, forming a cloud of small water droplets

Formation of cloud droplets

- Homogeneous (spontaneous) nucleation
 - Embryonic water droplets form through chance collisions of molecules of water vapor (no aerosols).
 - Will this happen spontaneously? ________________
 - Will the droplets grow to raindrops? ________________
 - Requires supersaturation with respect to a plane surface of water: Kelvin’s formula
 \[r = \frac{2\sigma}{nkT \ln(e/e_s)} \]
 - \(r \): droplet radius
 - \(e \): vapor pressure
 - \(e_s \): saturation vapor pressure
 - \(\sigma \): interfacial (surface) energy of water
 - \(n \): # H₂O molecules per unit vol. of liquid
 - \(k \): Boltzmann constant
 - \(T \): temperature
 - The droplet radius is dependent upon the relative humidity (e/e_s)

Kelvin curvature effect

- Water molecules are less strongly attached to a curved water surface, so they evaporate more readily!
 - Kelvin’s formula can be used to:
 - Calculate the radius \(r \) of a droplet which will be in unstable equilibrium with air with a given water vapor pressure \(e \)
 - Determine the saturation vapor pressure \(e \) over a droplet of specified radius \(r \)
 - \(r = 0.01 \) micrometers requires a RH of 112.5%
 - \(r = 1.0 \) micrometer requires a RH of 100.12%
Supersaturation (S)

- $S = (\text{RH}-100\%)$
- Supersaturation levels that develop in natural clouds due to the adiabatic ascent of air rarely exceed 1% (RH=101%)
- S is typically $\sim 0.1\%$

\Rightarrow Droplets do not form in natural clouds by the homogeneous nucleation of pure water!

Formation of cloud droplets

- Heterogeneous nucleation
 - Cloud droplets grow on wettable (non-hydrophobic) atmospheric aerosols
 - Some hygroscopic aerosols (e.g., sea salt, sodium chloride, ammonium sulfate, etc.) are water soluble; aerosols dissolve when wet, lowering the equilibrium saturation vapor pressure (the Köhler solute effect)
 - Droplets can form and grow on aerosols at much lower supersaturation levels than are required for homogeneous nucleation

Hygroscopic vs. hydrophobic aerosols

- Salt is hygroscopic
 - Can see a sea salt haze at the beach when relative humidity $< 100\%$
 - Condensation begins at RH=75% for sulfuric and nitric acid particles

Köhler curve

- Below a certain droplet size, the vapor pressure of the air adjacent to a solution droplet is less than that which is in equilibrium with a plane surface of water at the same temperature
- As the droplets increase in size, the solutions become weaker, the Kelvin curvature effect becomes the dominant influence
- At large radii, the relative humidity of the air adjacent to the droplets becomes essentially the same as that over pure water droplets
Köhler curve

Consider a solution droplet containing 10^{-19} kg of NaCl (curve #2):

If an initially dry NaCl particle of mass 10^{-19} kg were placed in air with RH = 90%, water vapor would condense onto the particle, the salt would dissolve, and a solution droplet of r = 0.05 \mu m would form.

Köhler curve

Consider a solution droplet containing 10^{-19} kg of NaCl (curve #2):

If an initially dry NaCl particle of mass 10^{-19} kg were placed in air with RH = 100.2%, a solution droplet of r = 0.13 \mu m would form on the NaCl particle.

Köhler curve

In both examples the droplets that form are in stable equilibria with the air:
- If the drops grew a bit more, the vapor pressures adjacent to their surfaces would rise above that of the ambient air and they would evaporate back to their equilibrium sizes
- If the drops evaporated a bit, the vapor pressures would fall below that of the ambient air and they would grow back to their equilibrium sizes by condensation

Köhler curve

Droplets small enough to be in stable equilibrium with the air are called haze droplets. All droplets in a state represented by points on the left-hand side of the maxima in the Köhler curves are haze.

Köhler curve

Again consider curve #2, but with RH = 100.36% and a droplet radius of r = 0.2 \mu m:

- Slight evaporation → growth by condensation back to its original size
- Slight growth → growth by condensation → continued growth → activated droplet (droplet has passed peak in its Köhler curve)

Haze

Source: http://www.nps.gov/shen/naturescience/visibility_and_haze.htm
Köhler curve

- Again consider curve #2, but with RH = 100.4%:

A NaCl solution droplet would continue growing by condensation at any radius.

Cloud condensation nuclei (CCN)

- Small particles upon which cloud droplets condense
- Soluble particles
 - At least 0.01 μm in radius for 1% supersaturation, depending on salt concentration (see Köhler curve)
 - Larger size or solubility → serves as CCN at lower supersaturation
- Insoluble particles
 - At least 0.1 μm in radius for 1% supersaturation (see Kelvin’s formula)
 - Larger size or more readily wetted by water → serves as CCN at lower supersaturation

Recall: Atmospheric particulates

<table>
<thead>
<tr>
<th>Type</th>
<th>Size range</th>
<th>Concentration (# cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken particles</td>
<td>< 0.1 μm</td>
<td>up to 10³</td>
</tr>
<tr>
<td>Large particles</td>
<td>0.1–1.0 μm</td>
<td>up to 10³</td>
</tr>
<tr>
<td>Giant particles</td>
<td>> 1.0 μm</td>
<td>up to 10³</td>
</tr>
<tr>
<td>Fog/cloud droplets</td>
<td>10–200 μm</td>
<td>20–600</td>
</tr>
</tbody>
</table>

Cloud condensation nuclei

Equivalent spherical diameters of raindrops, cloud droplets, and CCN

Large aerosols (0.2 to 1.0 μm diameter) are most important in natural cloud formation.

Typical CCN have a number concentration between 100 and 1000 per cm³.

Cloud condensation nuclei

- ~1% of aerosols serve as CCN in continental air
- ~10–20% of aerosols serve as CCN in maritime air
- Near the earth’s surface, continental air masses are generally significantly richer in CCN than are marine air masses.
Cloud condensation nuclei

- Concentrations of CCN over land decline by about a factor of 5 from the surface to 5 km.
- Concentrations of CCN over the ocean remain fairly constant with height from the surface to 5 km.

Cloud condensation nucleus sources

- Sources include:
 - Wind-generated dust
 - Volcanoes
 - Industrial operations
 - Forest fires
 - Sea salt
 - Sulfate particles
 - Conversion of gaseous components to small particles through chemical/photochemical processes.

Miniature CCN counter (http://www.arm.gov/scr/updates101507.htm)