A Brief History of Thermometry

History: The Thermoscope
- Designed by Galileo (1597)
- Something similar built by Santorio (1612)
- Problem: It responds to changes in pressure.
 - It’s also a barometer!

History: The Galileo Thermometer
- Also termometro lentos
- Ferdinand II built the first Galileo thermometer (1641)
- Each ball has a weight-to-volume ratio such that it will rise or fall in a hydrocarbon fluid as the density of the fluid changes
 - When fluid is less dense, balls will sink
 - When fluid is more dense, balls will rise

History: The Hook Thermometer
- Robert Hook developed an alcohol ("spirit") thermometer with a scale (1664)
- Each "degree" represents 1/500 of the volume of liquid at the freezing point of water (which is zero degrees)
- First intelligible meteorological records use this scale

Fahrenheit Scale (°F)
- 1724:
 - 0° = Temperature of sea salt, ice, and water
 - 30° = Temperature of ice and water
 - 96° = Temperature "obtained if the thermometer is placed in the mouth so as to acquire the heat of a healthy man"
 - Stories differ on the original definition for the scale
 - Boiling point of water = 212°F
 - Freezing point later (i.e., within Fahrenheit’s lifetime) adjusted to 32°F to give ΔT = 180° between freezing and boiling

Réaumer Scale (°Ré, °Re, or °R)
- 1731:
 - An 80-point scale
 - 80°R = boiling point of water
 - 0°R = freezing point of ice
 - Used mercury thermometers
 - Old European data may use °R
 - Why 80°?
 - Can be halved 4 times and still be an integer!
Rankine Scale (°R or °Ra)

- 1859:
 - Absolute scale where 1°F = 1°R
 - 0°R = -459.67°F = 0 K

- The Rankine scale is to Fahrenheit as the Kelvin scale is to Celsius!

Celsius Scale (°C)

- 1742:
 - 0°C = boiling point of water
 - 100°C = freezing point of water

- 1744:
 - Linnaeus reversed the scale

- 1954:
 - 0.01°C set as the triple point of water
 - 99.9839°C set as the boiling point of water at standard SLP
 - These changes make \(\Delta 1 \text{ K} = \Delta 1 \text{°C} \)

Kelvin Scale (K)

- 1954:
 - 0 K = absolute zero
 - 273.16 K = set as the triple point of water
 - 0°C = 273.15 K

About the Kelvin Scale

- From the 13th General Conference on Weights and Measures in 1967:
 - The 13th Conference Générale des Poids et Mesures (CGPM), considering the names “degree Kelvin” and “degree”, the symbols “°K” and “deg” and the rules for their use given in Resolution 12 of the 11th CGPM (1960), and the decision taken by the Comité International des Poids et Mesures in 1962 (PV, 30, 27), that the unit of thermodynamic temperature and the unit of temperature interval are one and the same unit, which ought to be denoted by a single name and a single symbol, decides the unit of thermodynamic temperature is denoted by the name “kelvin” and its symbol is “K”; the same name and the same symbol are used to express a temperature interval; a temperature interval may also be expressed in degrees Celsius; the decisions mentioned in the opening paragraph concerning the name of the unit of thermodynamic temperature, its symbol and the designation of the unit to express an interval or a difference of temperatures are abrogated, but the usages which derive from these decisions remain permissible for the time being.

About the Kelvin Scale

- From the 13th General Conference on Weights and Measures in 1967:
 - Considering
 - the names “degree Kelvin” and “degree”, the symbols “°K” and “deg” and the rules for their use given in Resolution 12 of the 11th CGPM (1960), and the decision taken by the Comité International des Poids et Mesures in 1962 (PV, 30, 27), that the unit of thermodynamic temperature and the unit of temperature interval are one and the same unit, which ought to be denoted by a single name and a single symbol, decides
 - the unit of thermodynamic temperature is denoted by the name “kelvin” and its symbol is “K”;
 - the same name and the same symbol are used to express a temperature interval;
 - a temperature interval may also be expressed in degrees Celsius;
 - the decisions mentioned in the opening paragraph concerning the name of the unit of thermodynamic temperature, its symbol and the designation of the unit to express an interval or a difference of temperatures are abrogated, but the usages which derive from these decisions remain permissible for the time being.