Hygrometry refers to the measurement of atmospheric humidity. Several variables describe the quantity of water vapor in the atmosphere:

- Absolute humidity (\(\rho_v \)), i.e., density of water vapor
- Specific humidity (\(q \))
- Mixing ratio (\(w \))
- Vapor pressure (\(e \))
- Relative humidity (\(e/e_s \))
- Dewpoint (\(T_d \))
- Wet bulb temperature (\(T_w \))

Can convert from one variable to another with knowledge of temperature and pressure.

Review: Saturation vapor pressure

The Clausius-Clapeyron equation gives the saturation vapor pressure over a plane surface of water as a function of temperature:

\[
e_s = e_{s0} \exp \left[\frac{L}{R_v \left(\frac{1}{T_0} - \frac{1}{T} \right)} \right]
\]

- \(e_{s0} = 610.78 \) Pa
- \(T_0 = 273.15 \) K
- \(R_v = 461.5 \) J kg\(^{-1}\) K\(^{-1}\)
- \(L = (2.501 \times 10^6 \) J kg\(^{-1}\) \(- (2340 \) J kg\(^{-1}\) K\(^{-1}\))T\(^{-1}\)°C\)

Saturation vapor pressure over water and ice

The Clausius-Clapeyron equation also gives the saturation vapor pressure over ice as a function of temperature:

\[
e_i = e_{i0} \exp \left[\frac{L_s}{R_v \left(\frac{1}{T_i} - \frac{1}{T} \right)} \right]
\]

- \(e_{i0} = 611.20 \) Pa
- \(T_i = 273.16 \) K
- \(R_v = 461.5 \) J kg\(^{-1}\) K\(^{-1}\)
- \(L_s = 2.834 \times 10^6 \) J kg\(^{-1}\)

Saturation vapor pressure over ice

Saturation vapor pressure over water and ice
Review: Dewpoint temperature
- The dewpoint temperature is the temperature to which a given air parcel must be cooled at constant pressure and water vapor content in order for saturation to occur.
- Substitute e for e_s and T_d for T in the Clausius-Clapeyron equation:

$$e = e_s \exp \left[\frac{L}{R} \left(\frac{1}{T_0} - \frac{1}{T_d} \right) \right]$$

Review: Wet-bulb temperature
- The wet-bulb temperature is the temperature to which air may be cooled by evaporating water into it at constant pressure until it becomes saturated.
- $T - T_w$ is the wet-bulb depression

$$T_d \leq T_w \leq T$$

Methods of measuring humidity
- Thermodynamic methods
 - Psychrometer
- Hygroscopic substance
 - Hair hygrometer
- Condensation methods
 - Chilled mirror
- Sorption methods
 - Chemical
 - Electrical
- Diffusion methods
- Optical methods

Psychrometry
- Two temperature sensors
 - One temperature sensor measures the ambient (dry-bulb) temperature (T)
 - The other measures the wet-bulb temperature (T_w)

Psychrometry: T_w vs. Relative Humidity
- Static sensitivity increases with increasing air temperature
- Static sensitivity increases with decreasing relative humidity

Psychrometry
- The psychrometric formula relates the wet-bulb depression ($T - T_w$) to vapor pressure

$$e = e_s(T_w) - \frac{pc}{edL}(T - T_w)$$

- Psychrometric constant:
 $$\gamma = \frac{pc}{edL} \approx 0.65 \ \text{mb at standard SLP}$$

- Experimentally, $e = e_s(T_w) - Ap(T - T_w)$
 $A=0.00062^{\circ}\text{C}^{-1}$ for water-covered wet bulbs
 $A=0.00054^{\circ}\text{C}^{-1}$ for ice-covered wet bulbs
Requirements for a successful psychrometric measurement

- Two well-matched thermometers
- Adequate ventilation (> 3 m s⁻¹)
- Radiation shield
- Distilled water to moisten the wick
 - Dissolved salts affect the evaporation rate
- Clean wick
 - Special psychrometer wick with no hydrophobic chemicals (not cotton)

Psychrometers

- Assmann psychrometer
- Sling psychrometer

Equilibrium sorption of water vapor

- Many hygrometers use the process of sorption to measure water vapor
 - Absorption: uptake of water into the bulk of the substance
 - Adsorption: surface retention of water molecules
 - Mass of water is proportional to relative humidity
- Consequences of sorption processes:
 - Material expands/contracts
 - Resistance or capacitance of material changes

Hair hygrometer

- The length of human and animal hair varies nonlinearly as a function of relative humidity
- Once used widely by the NWS
- Drawbacks: Drift, hysteresis, large lag times

Bulk polymer resistive sensor

- Measures resistance of a conductive polymer
- Sorbed water provides alternative conductive paths
- Resistance decreases as RH increases
Carbon hygristor

- As relative humidity increases:
 - Linear dimension increases
 - Distance between carbon particles increases
 - Resistance increases
- Used only on radiosondes

Capacitive sensors

- Porous Top Electrode (gold)
- Polymer
- Sensor Electrode (gold)
- Substrate

The dielectric constant of the polymer changes with relative humidity

Overview: Functional model for electric hygrometers

Vapor-liquid/vapor-solid equilibrium: Chilled mirror hygrometer

- Mirror cooled via Peltier effect until dew/frost forms
- Thermistor or RTD embedded in mirror detects T

Vapor-liquid/vapor-solid equilibrium: Chilled mirror hygrometer

NWS Model
HO83/1088

No dew/frost detected
Dew/frost detected
Spectroscopic Techniques

- Measure the attenuation of certain bands of radiation due to water vapor absorption
- Primary water vapor absorption bands:
 - 121.56 nm (0.12 μm) – Ultraviolet
 - Lyman-alpha emission line of atomic hydrogen
 - Fastest response of all humidity sensors
 - Terrible drift (i.e., within minutes)
 - 2.6 μm – Infrared
 - Expensive
 - Slow response

Spectroscopic Techniques

- Beer’s Law
 - The fraction of incident radiation, τ, transmitted through an atmospheric path
 $$\tau = \frac{I(s)}{I_0} = \exp(-k_\lambda \rho_v ds)$$
 - k_λ: absorption coefficient (m2 kg$^{-1}$)
 - ρ_v: water vapor density
 - ds: measurement path length
 - I: intensity of attenuated radiation
 - I_0: intensity of source radiation

Campbell Scientific KH20 Krypton Hygrometer

UV radiation emitted by a krypton lamp at 123.58 nm and 116.49 nm