

Tornadoes

- A tornado is a violently rotating column of air in contact with the ground
- Tornadogenesis is the formation of a tornado
- A visible condensation funnel is NOT necessary to have a tornado
- However, just a funnel without a circulation in contact with the ground is NOT a tornado
- Tornadoes may have wind speeds between 40 and 300+ m.p.h!
- On a local scale, the tornado is the most intense of all atmospheric circulations

The Enhanced Fujita Scale

- EF-Scale in use by the NWS starting February 1, 2007
- More complex than F-Scale

Why the NWS created the EF-Scale

- Need more damage indicatorsTo recalibrate winds
- associated with F-scale ratingsTo better correlate wind and
- To beller correlate wind and rating

 Flexibility, extensibility, expandability

The framed house is one of only a few F-scale damage indicators.

Evidence indicates that a wellconstructed house can be blown away by winds much less than 260 m.p.h. (F5 threshold).

 Status

 Drage Indexes for F scale

 Drage Indexes for F scale

 Status

 The scale of the scale o

EF-Scale Damage Indicators (DIs)

- 28 DIs identified initially
- Each DI has several Degrees of Damage (DOD)
- DIs and DODs can be added or modified

Degrees of Damage Some consecutive DODs have larger overlap than others DOD EXP LB UB Damage Description 53 80 Threshold of visible damage 63 97 Loss o 79 63 79 114 96 97 81 116 Uplift of 141 103 121 104 142 113 153 132 152 127 178 All walls o 170 142 198 162 220 200 Expected, Lower Bound, and Upper Bound of wind speed (in m.p.h.) for each Degree of Damage 14

F Scale	Wind Speed	EF-Scale	Wind Speed
F0	45-78	EF0	65-85
F1	79-117	EF1	86-109
F2	118-161	EF2	110-137
F3	162-209	EF3	138-167
F4	210-261	EF4	168-199
F5	262-317	EF5	200-234

EF-Scale answer				
EF-Scale Categories		Wind Speed Ranges		
	EF0	65-85		
	EF1	86-110		
	EF2	111-135		
	EF3	136-165		
	EF4	166-200		
	EF5	>200		
Wind Speed in mph, 3-Second gust				
_	ATMS 103			

Other Small-Scale Vortices

- Landspout a non-supercell tornado that forms without a preexisting midlevel mesocyclone; source of circulation is near the ground
- Gustnado circulation spins up on leading edge of gust front

Other Small-Scale Vortices Dust devil – A well-developed dust whirl, usually of short duration rendered visible by dust, sand, and debris Can cause damage up to F1 on Fujita scale Best developed on a hot, calm afternoon with clear skies, in a dry region where intense surface heating causes a very steep lapse rate

Southwest Corner of Basement

- This myth dates back to 1887 in a book on tornadoes by John Park Finley.
- It reigned as popular wisdom for 80 years
- In 1966, a University of Kansas professor studied this question exactly – is the southwest corner safer?
- The answer was an emphatic NO!

100

100

Open Windows to Equalize Air Pressure

- It's a waste of time and puts you in the way of flying glass and debris
- It could actually help the wind to remove your roof and will allow debris into the house
- Inside/outside pressure differences would be equalized by fresh gaping holes in windows/doors/walls well before an explosive pressure drop could approach the house

Rivers Protect Cities

- Dates back to Native American tribal legends
- Residents thought that Emporia, KS was "protected" by the Cottonwood and Neosho rivers. In 1974, a tornado killed six people and damaged \$20 million worth of property. Another tornado struck Emporia in 1991.
- Tornadoes are so rare that one or two generations could pass without a tornado hitting a particular area

Hills Protect Cities

- Similar to the river-protection myth...
- Topeka was thought to be safe because of Burnett's Mound...until a tornado swept through town.
- Again, tornadoes are rare and small towns in the plains are mere needles in a haystack.

Take Shelter Under an Overpass

- Modern day myth
- Dates back to 1991 and the Andover, KS tornado
- Film crew for TV station sought protection during a tornado from an overpass and the film was distributed widely
- The tornado was weak and missed them!
- Winds move *faster* under an overpass

Below are two captions that appeared with this photograph in national news magazines shortly after the events of 3 May 1999

Sometimes the closest shelter was a ditch. The photographer, a veteran storm chaser, shot this picture moments after leading mother and children under an overpass near Newcastle, Okla.

A woman and her two children huddle under a bridge outside Newcastle, Okla., as a half-mile-wide tornado looms. *Many of those who were still in* their homes when the storms struck paid the price.

1999 National Weather Association Annual Meeting - Biloxi, Mississippi

110

- 11

8

Highway Overpasses Are Inadequate **Tornado Sheltering Areas**

For the following meteorological reasons...

- Flying debris, missiles in airflow, debris collection
 Wind Channeling under Overpass
 Higher Wind Speeds above 'True' Ground Level

- Many (Most?) Overpasses have NO 'GIRDERS'
 Wind will change direction as vortex passes

This can be basically summarized as...

1999 National Weather Association Annual Meeting - Biloxi, Mississippi

