

Presentation Outline

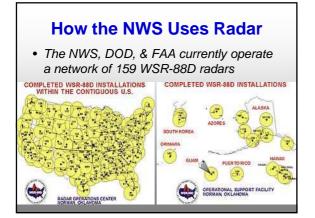
- Overview of meteorological radar

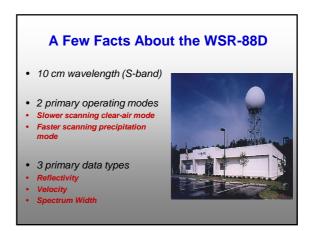
 Its humble beginnings
 - How it has advanced
 - What the future might hold
- How the NWS uses radar
- Examples of storm signatures observed by NWS Doppler radar

Its Humble Beginnings....

- During WWII, military radar operators noticed "noise" in returned echoes from weather elements like rain, snow, and sleet
- After the war, military scientists began developing technologies to use this radar data
- By the early 1950s, groups in the US and Canada had developed the first operational weather radars
- Many would consider these early radars
 primitive compared to current radar technology

How it has Advanced.....


- Meteorologists soon realized how useful radar could be for observing severe weather
- Between roughly1950 and 1980, radars were built by weather services/bureaus around the world
- The majority of these radars could only measure reflectivity
- During the late 1960s and early 1970s, the National Severe Storms Laboratory (NSSL) began developing meteorological Doppler radar and dualpolarization technology


How it has Advanced.....

- Between approximately 1980 and 2000, many conventional radars were replaced with Doppler radars
- Doppler radars provide velocity and spectrum width data in addition to reflectivity data
- Increased computing capabilities have produced a plethora of new radar products
- Many of these products are used daily by forecasters

What the Future Might Hold

- Over the past 10 years or so, NOAA/NSSL has been developing dual-polarization technology
- Dual-polarization radars provide much more information on precipitation type
- Widespread deployment of these radars is expected in the near future
- NOAA has also been experimenting with phased-array radar technology

How the NWS Uses Radar The WSR-88D incorporates different scan strategies depending on the current weather situation - on the right is VCP 21

150 200 220 300 350 400 Distance (km) from the malar

How the NWS Uses Radar

 This image displays VCP 11 which is better suited for rapidly evolving thunderstorms/severe weather

Country of Rafe Room (VCP)

150 200 250 300 350 400 Distance (km) from the radar


How the NWS Uses Radar

- NWS forecasters use the WSR-88D Network for many things:
 - Precipitation detection and estimation (i.e., is it raining & how much has fallen?)
 - Vertical wind profile generation
 - Storm location and propagation
 - Storm intensity/strength
 - Downburst & tornado detection

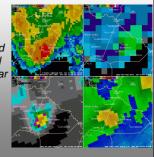
<section-header> Upper panel displays radar derived storm total precipitation Lower panel displays radar derived 1-hour precipitation

VAD Wind Profile Generation

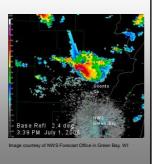
- A VWP is a timeheight display of horizontal winds computed above the 88D radar.
- They are useful for monitoring wind shear (speed & direction) and jet stream evolution.

Storm Location & Propagation

- This 88D radar image was taken in July of 2008 over the GSP forecast area
- Note the higher reflectivities in red; they are indicative of stronger thunderstorms


Storm Location & Propagation

- This image shows a mesoscale convective system (or MCS) over the NC/TN border region in May of 2009
- Note the warning polygons over the state line

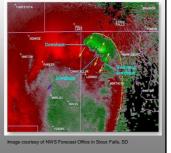

Storm Intensity/Strength

 Numerous radar derived products allow forecasters to estimate the size and strength of individual thunderstorms in near real-time

Storm Intensity/Strength

- The image on the right displays what meteorologists call a "three-body scatter spike" or "hail spike"
- This is a strong indicator that a thunderstorm contains large hail

Downburst & Tornado Detection


 Downbursts are strong downdrafts within thunderstorms that can produce damaging straight- line winds once they hit the ground and spread out

mage courtesy of NOAA/National Severe Storms Laboratory

Downburst & Tornado Detection

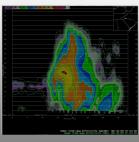
- Downburst detected by WSR-88D base velocity data.
- This event occurred near Tea, South Dakota on August 18th, 2006 (winds were estimated between 50-80 mph)

Downburst & Tornado Detection

- Good example of a radar "hook echo" as seen in a reflectivity image
- The presence of this type of signature typically warrants a tornado warning

Downburst & Tornado Detection

 This image displays strong cyclonic circulation associated with a developing tornado near Oklahoma City on May 3rd, 1999


More Examples of Storm Signatures

- Here is another example of an MCS over the GSP forecast area
- Note the characteristic "bow echo" signature in the reflectivity image

More Examples of Storm Signatures

This image displays a cross-section of reflectivity through a mature thunderstorm near the NC/SC border on July 7th, 2008

Thanks for your attention...

That's all I have

Are there any additional questions?