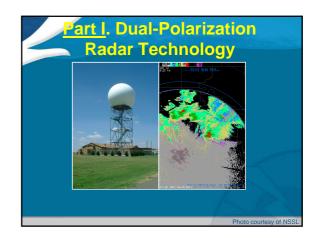
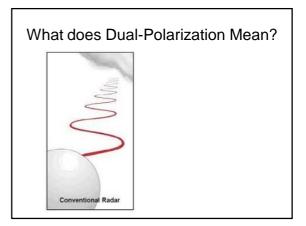
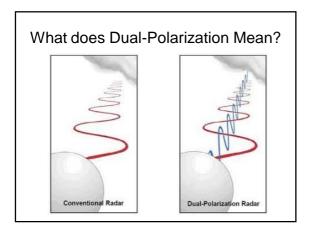


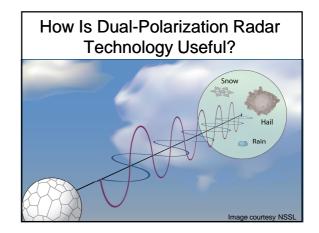
Daniel C. Miller National Weather Service Columbia, SC

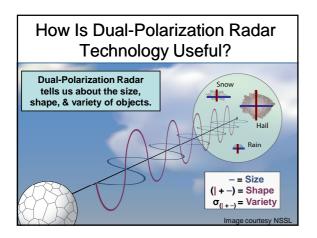

The Big Idea New radar and satellite technology will improve NWS operations!

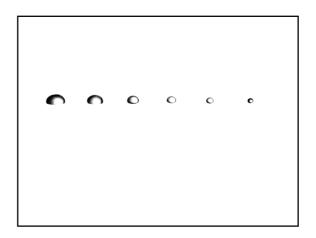
 Introduction - The Big Idea

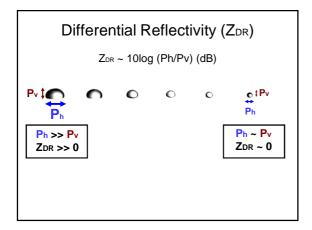

- Part I. Dual-Polarization Radar Technology Benefits
 What is it?

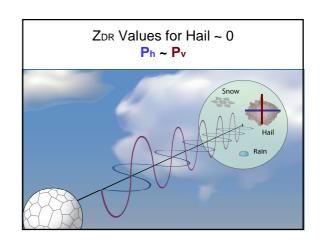

 - Applications
 When?
- Part II. Next Generation Weather Satellite
 Benefits and New Features
 - Applications When?
- Conclusion Summary

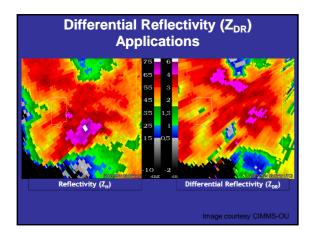


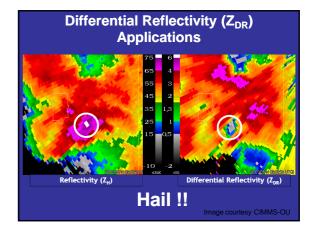

Dual-Polarization Radar Technology Key Benefits

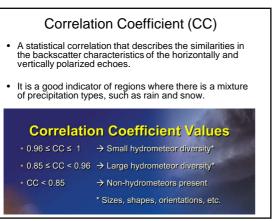

- Better Determination of Precipitation Type
- Better Estimates of Rainfall Amount
- Better Detection of Hail

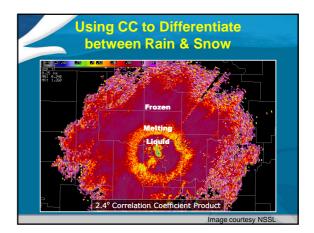


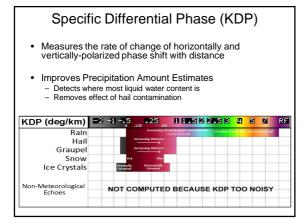


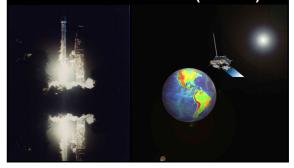












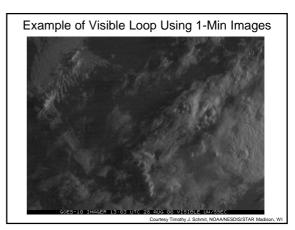
When will Dual-Polarization Radar Technology Arrive?

- 4 NWS beta test sites Fall 2010
- Nationwide installation 2011-2012 – Including Columbia, SC (CAE)

Part II. Next Generation Geostationary Operational Environmental Satellite (GOES-R)

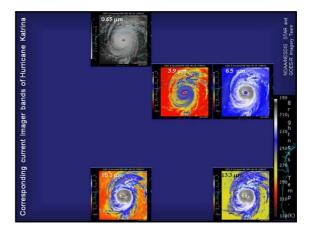
GOES-R New Capabilities

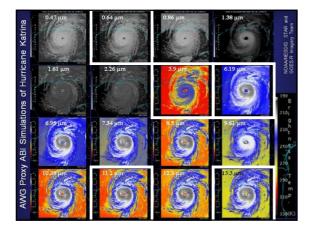
- Higher Resolution Images
- Data Received in More Frequent Time Intervals
- A Large Suite of New Products

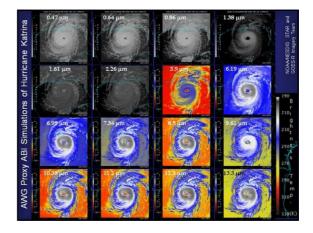

Comparison of GOES-R Imager to current GOES

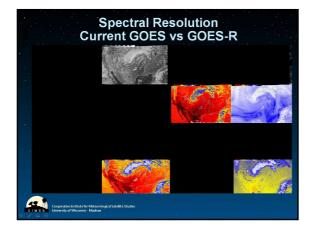
Spectral Coverage Visible Resolution IR/WV resolution Full disk CONUS Mesoscale GOES-R 16 bands 0.5 km 2 km Every 15 min Every 5 min Every 30 sec!

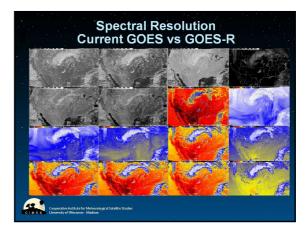
Current 5 bands ~1 km ~4-8 km Every 3 hr Every 15 min N/A

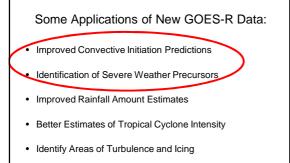

Comparison of GOES-R Imager to current GOES


	GOES-R	Current	
Spectral Coverage	16 bands	5 bands	
Visible Resolution	0.5 km	~1 km	
IR/WV resolution	2 km	~4-8 km	
Full disk	Every 15 min	Every 3 hr	
CONUS	Every 5 min	Every 15 min	
Mesoscale	Every 30 sec!	N/A	



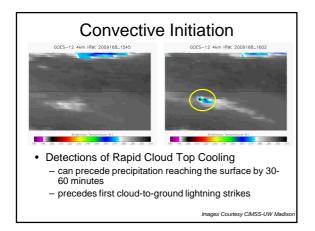

Comparison of GOES-R Imager to current GOES


	GOES-R	<u>Current</u>
Spectral Coverage	16 bands	5 bands
Visible Resolution	0.5 km	~1 km
IR/WV resolution	2 km	~4-8 km
Full disk	Every 15 min	Every 3 hr
CONUS	Every 5 min	Every 15 min
Mesoscale	Every 30 sec!	N/A



GOES-R New Capabilities (Cont	'd)
an a n a a an a a an a a a a a a a a a	\$\$9.75
Provide Better Detection and Measuremen	ts of:
- Cloud Structure	°3 3
Type, Height, Phase, & Temperature	. e
ાં જે	-
Other Atmospheric Elements:	
Wind, Moisture, & Temperature	
Lightning	530 °
	500 ¹³ -
	22 III

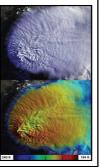
Some Applications of New GOES-R Data:


- Improved Convective Initiation Predictions
- Identification of Severe Weather Precursors
- Improved Rainfall Amount Estimates
- Better Estimates of Tropical Cyclone Intensity
- Identify Areas of Turbulence and Icing
- Improved Input to Numerical Weather Prediction Models

· Improved Input to Numerical Weather Prediction Models

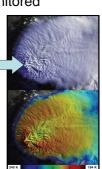
How will GOES-R improve warning lead times?

• Rapid Cloud top cooling detection


How will GOES-R improve warning lead times?

- Rapid Cloud top cooling detection
- Severe Thunderstorm Structures Better Detected and Monitored

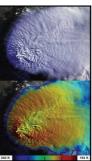
Severe Thunderstorm Structures Better Detected and Monitored


 Overshooting tops

 Collapse of overshooting top can precede severe weather/tornado on ground

Severe Thunderstorm Structures Better Detected and Monitored

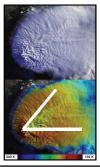
Overshooting tops
 Collapse of overshooting top
 can precede severe
 weather/tornado on ground



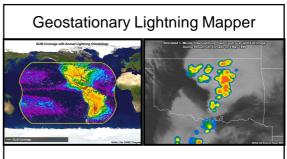
Severe Thunderstorm Structures Better Detected and Monitored

- Overshooting tops

 Collapse of overshooting top can precede severe weather/tornado on ground
- Enhanced-V Signature


 Usually related to Supercell/Severe Weather

Severe Thunderstorm Structures Better Detected and Monitored


- Overshooting tops

 Collapse of overshooting top can precede severe weather/tornado on ground
- Enhanced-V Signature
 Usually related to
 Supercell/Severe Weather

How will GOES-R improve warning lead times?

- Rapid Cloud top cooling detection
- Severe Thunderstorm Structures Better Detected and Monitored
- Better Rainfall Estimates
- Real-Time Lightning Monitoring (GLM)

- Real-Time detection of lightning across most of the Western Hemisphere
- Flash Rate and Trends
- IC/CC as well as CG lightning

Conclusion

• New radar and satellite technology will result in improved forecast and warning operations.

Conclusion

• New radar and satellite technology will result in improved forecast and warning operations.

